Teaching and Learning Computational Drug Design: Student Investigations of 3D Quantitative Structure-Activity Relationships through Web Applications

被引:33
|
作者
Ragno, Rino [1 ]
Esposito, Valeria [2 ]
Di Mario, Martina [2 ]
Masiello, Stefano [2 ]
Viscovo, Marco [2 ]
Cramer, Richard D.
机构
[1] Sapienza Rome Univ, Dept Drug Chem & Technol, Rome Ctr Mol Design, I-00185 Rome, Italy
[2] Sapienza Rome Univ, Pharmaceut Biotechnol Master Degree Course, Pharm & Med Fac, I-00185 Rome, Italy
关键词
Upper-Division Undergraduate; Graduate Education/Research; Continuing Education; Chemoinformatics; Interdisciplinary/Multidisciplinary; Computer-Based Learning; Molecular Modeling; Drugs/Pharmaceuticals; Medicinal Chemistry; 3D QSAR; LINEAR-REGRESSION; TEMPLATE COMFA; QSAR; DISCOVERY; 3D-QSAR; CHALLENGES; INHIBITORS; LIGANDS; DOCKING; BINDING;
D O I
10.1021/acs.jchemed.0c00117
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing use of information technology in the discovery of new molecular entities encourages the use of modern molecular-modeling tools to help teach important concepts of drug design to chemistry and pharmacy undergraduate students. In particular, statistical models such as quantitative structure-activity relationships (QSAR)-often as its 3D QSAR variant-are commonly used in the development and optimization of a leading compound. We describe how these drug discovery methods can be taught and learned by means of free and open-source web applications, specifically the online platform www.3d-qsar. corn. This new suite of web applications has been integrated into a drug design teaching course, one that provides both theoretical and practical perspectives. We include the teaching protocol by which pharmaceutical biotechnology master students at Pharmacy Faculty of Sapienza Rome University are introduced to drug design. Starting with a choice among recent articles describing the potencies of a series of molecules tested against a biological target, each student is expected to build a 3D QSAR ligand-based model from their chosen publication, proceeding as follows: creating the initial data set (Py-MolEdit); generating the global minimum conformations (Py-ConfSearch); proposing a promising mutual alignment (Py-Align); and finally, building, and optimizing a robust 3D QSAR models (Py-CoMFA). These student activities also help validate these new molecular modeling tools, especially for their usability by inexperienced hands. To more fully demonstrate the effectiveness of this protocol and its tools, we include the work performed by four of these students (four of the coauthors), detailing the satisfactory 3D QSAR models they obtained. Such scientifically complete experiences by undergraduates, made possible by the efficiency of the 3D QSAR methodology, provide exposure to computational tools in the same spirit as traditional laboratory exercises. With the obsolescence of the classic Comparative Molecular Field Analysis Sybyl host, the 3dqsar web portal offers one of the few available means of performing this well-established 3D QSAR method.
引用
收藏
页码:1922 / 1930
页数:9
相关论文
共 50 条
  • [1] Study on 3D Quantitative Structure-Activity Relationships of Taxoid
    Qi Qing ZHU
    Zong Ru GUO
    Niu HUANG
    Min Min WANG and Feng Ming CHU (Department of Synthetic Medicinal Chemistry
    ChineseChemicalLetters, 1997, (10) : 893 - 896
  • [2] Study on 3D quantitative structure-activity relationships of taxoid
    Zhu, QQ
    Guo, ZR
    Huang, N
    Wang, MM
    Chu, FM
    CHINESE CHEMICAL LETTERS, 1997, 8 (10) : 893 - 896
  • [3] Use of 3D printing in teaching to bring together structure-activity relationships, drug design, and public engagement with pharmacology
    Tucker, S.
    BRITISH JOURNAL OF PHARMACOLOGY, 2019, 176 (16) : 3064 - 3065
  • [4] 3D quantitative and qualitative structure-activity relationships of the δ-opioid receptor antagonists
    Chun, Sun
    Lee, Jee-Young
    Ro, Seong-Gu
    Jeong, Ki-Woong
    Kim, Yangmee
    Yoon, Chang-Ju
    Bulletin of the Korean Chemical Society, 2008, 29 (03) : 656 - 662
  • [5] 3D quantitative and qualitative structure-activity relationships of the δ-opioid receptor antagonists
    Chun, Sun
    Lee, Jee-Young
    Ro, Seong-Gu
    Jeong, Ki-Woong
    Kim, Yangmee
    Yoon, Chang-Ju
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2008, 29 (03): : 656 - 662
  • [6] Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review
    Achary, Patnala Ganga Raju
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2020, 20 (14) : 1375 - 1388
  • [7] APPLICATIONS OF QUANTITATIVE STRUCTURE-ACTIVITY-RELATIONSHIPS TO DRUG DESIGN
    FUJITA, T
    ACTA PHARMACEUTICA JUGOSLAVICA, 1987, 37 (01): : 43 - 51
  • [8] Novel 3D descriptors using excluded volume: Application to 3D quantitative structure-activity relationships
    Tominaga, Y
    Fujiwara, I
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1997, 37 (06): : 1158 - 1161
  • [9] Development of quantitative structure-activity relationships and its application in rational drug design
    Yang, Guang-Fu
    Huang, Xiaoqin
    CURRENT PHARMACEUTICAL DESIGN, 2006, 12 (35) : 4601 - 4611
  • [10] A Relational Learning Approach to Structure-Activity Relationships in Drug Design Toxicity Studies
    Camacho, Rui
    Pereira, Max
    Costa, Vitor Santos
    Fonseca, Nuno A.
    Adriano, Carlos
    Simoes, Carlos J. V.
    Brito, Rui M. M.
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2011, 8 (03)