On the Global Nilpotent Centers of Cubic Polynomial Hamiltonian Systems

被引:2
|
作者
Barreira, Luis [1 ]
Llibre, Jaume [2 ]
Valls, Claudia [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
基金
欧盟地平线“2020”;
关键词
Center; Global center; Hamiltonian system; Symmetry with respect to the y-axis; Cubic polynomial differential system;
D O I
10.1007/s12591-022-00606-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A global center for a vector field in the plane is a singular point p having R-2 filled of periodic orbits with the exception of the singular point p. Polynomial differential systems of degree 2 have no global centers. In this paper we classify the global nilpotent centers of planar cubic polynomial Hamiltonian systems symmetric with respect to the y-axis.
引用
收藏
页码:1001 / 1011
页数:11
相关论文
共 50 条
  • [1] Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields
    Colak, Ilker E.
    Llibre, Jaume
    Valls, Claudia
    ADVANCES IN MATHEMATICS, 2014, 259 : 655 - 687
  • [2] Polynomial Hamiltonian systems of degree 3 with symmetric nilpotent centers
    Dias, Fabio Scalco
    Llibre, Jaume
    Valls, Claudia
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 144 : 60 - 77
  • [3] Nilpotent centers of cubic systems
    A. F. Andreev
    I. A. Andreeva
    L. V. Detchenya
    T. V. Makovetskaya
    A. P. Sadovskii
    Differential Equations, 2017, 53 : 975 - 980
  • [4] Nilpotent centers of cubic systems
    Andreev, A. F.
    Andreeva, I. A.
    Detchenya, L. V.
    Makovetskaya, T. V.
    Sadovskii, A. P.
    DIFFERENTIAL EQUATIONS, 2017, 53 (08) : 975 - 980
  • [5] Nilpotent Global Centers of Linear Systems with Cubic Homogeneous Nonlinearities
    Garcia-Saldana, J. D.
    Llibre, Jaume
    Valls, Claudia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (01):
  • [6] Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields
    Colak, Ilker E.
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (11) : 5518 - 5533
  • [7] Global centers of a class of cubic polynomial differential systems
    Llibre, Jaume
    Rondon, Gabriel
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (05) : 2141 - 2160
  • [8] ON THE CONFIGURATIONS OF CENTERS OF PLANAR HAMILTONIAN KOLMOGOROV CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Xiao, Dongmei
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (02) : 611 - 644
  • [9] Polynomial Hamiltonian systems with a nilpotent critical point
    Han, Maoan
    Shu, Chenggang
    Yang, Junmin
    Chian, Abraham C. -L.
    ADVANCES IN SPACE RESEARCH, 2010, 46 (04) : 521 - 525
  • [10] Z2-SYMMETRIC PLANAR POLYNOMIAL HAMILTONIAN SYSTEMS OF DEGREE 3 WITH NILPOTENT CENTERS
    Dias, Fabio Scalco
    Llibre, Jaume
    Valls, Claudia
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,