WKB approach to calculating the lifetime of quasistationary states:: Harmonic oscillator in a polynomial perturbation -: art. no. 022107

被引:0
|
作者
Zamastil, J
Cízek, J
Skála, L
机构
[1] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague 2, Czech Republic
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 02期
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A simple and straightforward WKB approach to calculating the lifetime of quasistationary states in spherically symmetric potential wells is suggested. Using this approach, a general formula for the imaginary part of the energy for potentials of the form V(x) = P(x) - muQ(x) - where P(x) is the radial part of the potential for a spherically symmetric harmonic oscillator and Q(x) is an even polynomial-is derived. Using this formula, the usual tedious procedure of the explicit asymptotic matching of the WKB and perturbative wave functions is avoided, and calculations are substantially simplified. The leading term and a few corrections of the series for the imaginary part of the energy and the related lifetime are analytically calculated.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] WKB approach to calculating the lifetime of quasistationary states: Harmonic oscillator in a polynomial perturbation
    Zamastil, J.
    Čížek, J.
    Skála, L.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (02): : 022107 - 022101
  • [2] WKB approach to calculating the lifetime of quasistationary states
    Zamastil, J
    Cízek, J
    Skála, L
    PHYSICAL REVIEW LETTERS, 2000, 84 (25) : 5683 - 5686
  • [3] Multidimensional WKB approximation and the lifetime calculation -: art. no. 042101
    Zamastil, J
    Spirko, V
    Cízek, J
    Skála, L
    Bludsky, O
    PHYSICAL REVIEW A, 2001, 64 (04): : 421011 - 4210111
  • [4] Relativistic harmonic oscillator -: art. no. 103514
    Li, ZF
    Liu, JJ
    Lucha, W
    Ma, WG
    Schöberl, FF
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (10)
  • [5] Measuring nonlinear functionals of quantum harmonic oscillator states - art. no. 060501
    Pregnell, KL
    PHYSICAL REVIEW LETTERS, 2006, 96 (06)
  • [6] Continuum discretization in a basis of transformed harmonic-oscillator states -: art. no. 052111
    Pérez-Bernal, F
    Martel, I
    Arias, JM
    Gómez-Camacho, J
    PHYSICAL REVIEW A, 2001, 63 (05): : 521111 - 521119
  • [7] Three-body continuum discretization in a basis of transformed harmonic oscillator states -: art. no. 024007
    Rodríguez-Gallardo, M
    Arias, JM
    Gómez-Camacho, J
    Moro, AM
    Thompson, IJ
    Tostevin, JA
    PHYSICAL REVIEW C, 2005, 72 (02):
  • [8] Nonstandard q-deformed realizations of the harmonic oscillator -: art. no. 014305
    Ballesteros, A
    Civitarese, O
    Reboiro, M
    PHYSICAL REVIEW C, 2005, 72 (01):
  • [9] Large-N harmonic oscillator as a string theory -: art. no. 025003
    Itzhaki, N
    McGreevy, J
    PHYSICAL REVIEW D, 2005, 71 (02): : 025003 - 1
  • [10] Kraus representation of a damped harmonic oscillator and its application -: art. no. 042308
    Liu, YX
    Özdemir, SK
    Miranowicz, A
    Imoto, N
    PHYSICAL REVIEW A, 2004, 70 (04): : 042308 - 1