Synergistic chemo/biocatalytic synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural

被引:37
|
作者
Yang, Zi-Yue [1 ]
Wen, Mao [1 ]
Zong, Min-Hua [1 ]
Li, Ning [1 ]
机构
[1] South China Univ Technol, Sch Food Sci & Engn, 381 Wushan Rd, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Bio-based chemicals; Biomass; Chemo-enzymatic synthesis; Heterocycles; Oxidation; SELECTIVE OXIDATION; CARBOXYLIC-ACIDS; LACCASE; FURANS; BIOTRANSFORMATION; BIOCATALYSIS; CHEMICALS; OXIDASE; BIOMASS; SYSTEM;
D O I
10.1016/j.catcom.2020.105979
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
2,5-Furandicarboxylic acid (FDCA) is a promising bio-based chemical in polymer industry. In this work, we constructed an oxidative cascade for one-pot synthesis of FDCA from 5-hydroxymethylfurfural (HMF) by exploiting Comamonas testosteroni SC1588 cells and laccase-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) system. HMF was oxidized to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) by the cells at neutral pH. The HMFCA formation shifted pH of the reaction mixture to acidic range, which favored laccase-TEMPO catalytic oxidation. 5-Formyl-2-furancarboxylic acid derived from HMFCA via laccase-TEMPO catalysis was converted to FDCA by the cells. FDCA was obtained in an 87% yield within 36 h, providing a productivity of around 0.4 g/L h.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Integrated chemo and bio-catalyzed synthesis of 2,5-furandicarboxylic acid from fructose derived 5-hydroxymethylfurfural
    Parate, Roopa D.
    Dharne, Mahesh S.
    Rode, Chandrashekhar, V
    BIOMASS & BIOENERGY, 2022, 161
  • [2] Concurrent Biocatalytic Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid by Merging Galactose Oxidase with Whole Cells
    Zhu, Fan-Feng
    Wang, Jian-Peng
    Zong, Min-Hua
    Zheng, Zhao-Juan
    Li, Ning
    PROCESSES, 2023, 11 (08)
  • [3] Simulation and economic analysis of 5-hydroxymethylfurfural conversion to 2,5-furandicarboxylic acid
    Triebl, Christoph
    Nikolakis, Vladimiros
    Ierapetritou, Marianthi
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 52 : 26 - 34
  • [4] Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid
    Totaro, Grazia
    Sisti, Laura
    Marchese, Paola
    Colonna, Martino
    Romano, Angela
    Gioia, Claudio
    Vannini, Micaela
    Celli, Annamaria
    CHEMSUSCHEM, 2022, 15 (13)
  • [5] Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Wei, Zange
    Li, Wenhao
    Yuan, Fang
    Sun, Weizhen
    Zhao, Ling
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (50) : 18352 - 18361
  • [6] A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Peng, Yani
    Qiu, Boya
    Ding, Shengzhe
    Hu, Min
    Zhang, Yuxin
    Jiao, Yilai
    Fan, Xiaolei
    Parlett, Christopher M. A.
    CHEMPLUSCHEM, 2024, 89 (01):
  • [7] A Review on Green and Efficient Synthesis of 5-Hydroxymethylfurfural (HMF) and 2,5-Furandicarboxylic Acid (FDCA) from Sustainable Biomass
    Aranha, Danwyn J.
    Gogate, Parag R.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (07) : 3053 - 3078
  • [8] Selective Synthesis of 2,5-Diformylfuran and 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Catalyzed by Magnetically Separable Catalysts
    Yang, Zhenzhen
    Qi, Wei
    Su, Rongxin
    He, Zhimin
    ENERGY & FUELS, 2017, 31 (01) : 533 - 541
  • [9] Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst
    Wang, Ke-Feng
    Liu, Chun-lei
    Sui, Kun-yan
    Guo, Chen
    Liu, Chun-Zhao
    CHEMBIOCHEM, 2018, 19 (07) : 654 - 659
  • [10] NiFeCo wrinkled nanosheet electrode for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Chen, Bingkun
    Yang, Bowen
    Su, Yaqiong
    Hou, Qidong
    Smith Jr, Richard Lee
    Qi, Xinhua
    Guo, Haixin
    GREEN CHEMISTRY, 2025, 27 (07) : 2117 - 2129