Bartnik's Mass and Hamilton's Modified Ricci Flow (vol 17, pg 2783, 2016)

被引:0
|
作者
Lin, Chen-Yun [1 ]
Sormani, Christina [2 ]
机构
[1] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
[2] CUNY, Grad Ctr, Dept Math, 365 5th Ave, New York, NY 10016 USA
来源
ANNALES HENRI POINCARE | 2020年 / 21卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00023-020-00902-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Hyun-Chul Jang observed that we dropped a term in our calculations in [1].
引用
收藏
页码:1759 / 1764
页数:6
相关论文
共 50 条
  • [1] Bartnik’s Mass and Hamilton’s Modified Ricci Flow
    Chen-Yun Lin
    Christina Sormani
    Annales Henri Poincaré, 2016, 17 : 2783 - 2800
  • [2] Bartnik's Mass and Hamilton's Modified Ricci Flow
    Lin, Chen-Yun
    Sormani, Christina
    ANNALES HENRI POINCARE, 2016, 17 (10): : 2783 - 2800
  • [3] Correction to: Bartnik’s Mass and Hamilton’s Modified Ricci Flow
    Chen-Yun Lin
    Christina Sormani
    Annales Henri Poincaré, 2020, 21 : 1759 - 1764
  • [4] Remarks on Hamilton's Compactness Theorem for Ricci flow
    Topping, Peter M.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 : 173 - 191
  • [5] On Evolution Equations Under the Hamilton’s Ricci Flow
    Vladimir Rovenski
    Sergey Stepanov
    Irina Tsyganok
    Results in Mathematics, 2020, 75
  • [6] On Evolution Equations Under the Hamilton's Ricci Flow
    Rovenski, Vladimir
    Stepanov, Sergey
    Tsyganok, Irina
    RESULTS IN MATHEMATICS, 2020, 75 (04)
  • [7] Hamilton's Optics: The Power of Wavefronts (vol 21, pg 527, 2016)
    Nityananda, Rajaram
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2016, 21 (07): : 671 - 671
  • [9] A GEOMETRIC INTERPRETATION OF HAMILTON'S HARNACK INEQUALITY FOR THE RICCI FLOW
    Chow, Bennett
    Chu, Sun-Chin
    MATHEMATICAL RESEARCH LETTERS, 1995, 2 (06) : 701 - 718
  • [10] A survey of Hamilton's program for the Ricci flow on 3-manifolds
    Chow, B
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 63 - 78