Transport Reagents through the Pore Structure of a Membrane Catalyst under Isothermal and Non-Isothermal Conditions

被引:2
|
作者
Gavrilova, Natalia [1 ]
Gubin, Sergey [2 ]
Myachina, Maria [1 ]
Skudin, Valery [2 ]
机构
[1] D Mendeleev Univ Chem Technol Russia, Fac Nat Sci, Dept Colloid Chem, Miusskaya Sq 9, Moscow 125047, Russia
[2] D Mendeleev Univ Chem Technol Russia, Fac Petr Chem & Polymers, Dept Chem Technol Carbon Mat, Miusskaya Sq 9, Moscow 125047, Russia
关键词
membrane catalyst; diffusion transport mode; membrane reactor; molybdenum carbide; conventional reactor; dry reforming of methane; non-isothermal Knudsen diffusion; diffusion coefficient; thermal creep; METHANE; REACTORS;
D O I
10.3390/membranes11070497
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The article presents the results of an experimental comparison of methane transport in the pore structure of a membrane catalyst under isothermal and non-isothermal Knudsen diffusion conditions. It is shown that under the conditions of non-isothermal Knudsen diffusion in the pore structure of the membrane catalyst, there is a coupling of dry reforming of the methane (DRM) and gas transport, which leads to the intensification of this process. The reasons for the intensification are changes in the mechanism of gas transport, an increase in the rate of mass transfer, and changes in the mechanism of some stages of the DRM. The specific rate constant of the methane dissociation reaction on a membrane catalyst turned out to be an order of magnitude (40 times) higher than this value on a traditional (powder) catalyst.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] MEMBRANE-TRANSPORT OF DRUG UNDER NON-ISOTHERMAL CONDITIONS
    TOJO, K
    CHIEN, YW
    SUN, Y
    GHANNAM, M
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1987, 20 (06) : 626 - 629
  • [2] Microalgae pyrolysis under isothermal and non-isothermal conditions
    Cano-Pleite, Eduardo
    Rubio-Rubio, Mariano
    Garcia-Hernando, Nestor
    Soria-Verdugo, Antonio
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2020, 51
  • [3] THE PERFORMANCE OF A CATALYST PELLET UNDER NON-ISOTHERMAL REACTION CONDITIONS
    SCHUTT, E
    STAUB REINHALTUNG DER LUFT, 1982, 42 (01): : 1 - 5
  • [4] TRANSPORT-PROPERTIES OF MULTICOMPONENT LIQUID SLAGS UNDER ISOTHERMAL AND NON-ISOTHERMAL CONDITIONS
    GOTO, KS
    NAGATA, K
    UKYO, Y
    CANADIAN METALLURGICAL QUARTERLY, 1981, 20 (01) : 117 - 127
  • [5] THE CRYSTALLIZATION KINETICS OF POLYETHYLENE UNDER ISOTHERMAL AND NON-ISOTHERMAL CONDITIONS
    CHEW, S
    GRIFFITHS, JR
    STACHURSKI, ZH
    POLYMER, 1989, 30 (05) : 874 - 881
  • [6] PVDF Membrane Formation via NIPS in Isothermal and Non-Isothermal Conditions: Thermodynamics, Structure, and Properties
    Pochivalov, K. V.
    Basko, A. V.
    Lebedeva, T. N.
    Yurov, M. Y.
    Yushkin, A. A.
    Bronnikov, S. V.
    Volkov, A. V.
    MEMBRANES AND MEMBRANE TECHNOLOGIES, 2024, 6 (06) : 473 - 490
  • [7] Kinetics of solid state reactions under isothermal and non-isothermal conditions
    Kanungo, SB
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2005, 82 (04) : 315 - 328
  • [8] Pyrolysis kinetics of perfusion tubes under non-isothermal and isothermal conditions
    Wang, Jinxing
    Zhao, Haibo
    ENERGY CONVERSION AND MANAGEMENT, 2015, 106 : 1048 - 1056
  • [9] Thermal Degradation of Polychloroprene Rubber Under Isothermal and Non-Isothermal Conditions
    P. Budrugeac
    E. Segal
    Journal of Thermal Analysis and Calorimetry, 1998, 53 : 441 - 447
  • [10] Thermal degradation of polychloroprene rubber under isothermal and non-isothermal conditions
    Budrugeac, P
    Segal, E
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1998, 53 (02): : 441 - 447