Effect of ambient combinations of argon, oxygen, and hydrogen on the properties of DC magnetron sputtered indium tin oxide films

被引:47
|
作者
Marikkannan, M. [1 ]
Subramanian, M. [2 ]
Mayandi, J. [1 ,3 ]
Tanemura, M. [2 ]
Vishnukanthan, V. [4 ]
Pearce, J. M. [3 ,5 ]
机构
[1] Madurai Kamaraj Univ, Dept Mat Sci, Sch Chem, Madurai 625021, Tamil Nadu, India
[2] Nagoya Inst Technol, Dept Frontier Mat, Grad Sch Engn, Showa Ku, Nagoya, Aichi 4668555, Japan
[3] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA
[4] Univ Oslo, Dept Phys, Ctr Mat Sci & Nanotechnol, N-0318 Oslo, Norway
[5] Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA
关键词
ITO THIN-FILMS; OPTICAL-PROPERTIES; SUBSTRATE-TEMPERATURE; TRANSPARENT; GROWTH; GAS;
D O I
10.1063/1.4906566
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Sputtering has been well-developed industrially with singular ambient gases including neutral argon (Ar), oxygen (O-2), hydrogen (H-2) and nitrogen (N-2) to enhance the electrical and optical performances of indium tin oxide (ITO) films. Recent preliminary investigation into the use of combined ambient gases such as an Ar+O-2+H-2 ambient mixture, which was suitable for producing high-quality (low sheet resistance and high optical transmittance) of ITO films. To build on this promising preliminary work and develop deeper insight into the effect of ambient atmospheres on ITO film growth, this study provides a more detailed investigation of the effects of ambient combinations of Ar, O-2, H-2 on sputtered ITO films. Thin films of ITO were deposited on glass substrates by DC magnetron sputtering using three different ambient combinations: Ar, Ar+O-2 and Ar+O-2+H-2. The structural, electrical and optical properties of the three ambient sputtered ITO films were systematically characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, four probe electrical conductivity and optical spectroscopy. The XRD and Raman studies confirmed the cubic indium oxide structure, which is polycrystalline at room temperature for all the samples. AFM shows the minimum surface roughness of 2.7 nm for Ar+O-2+ H-2 sputtered thin film material. The thickness of the films was determined by the cross sectional SEM analysis and its thickness was varied from 920 to 817 nm. The columnar growth of ITO films was also discussed here. The electrical and optical measurements of Ar+O-2+H-2 ambient combinations shows a decreased sheet resistance (5.06 ohm/square) and increased optical transmittance (69%) than other samples. The refractive index and packing density of the films were projected using optical transmission spectrum. From the observed results the Ar+O-2+H-2 ambient is a good choice to enhance the total optoelectronic properties of the ITO films. The improved electrical and optical properties of ITO films with respect to the Ar+O-2+H-2 ambient sample were discussed in detail. In addition, the physical properties were also discussed with the influence of this ambient combination with respect to Ar, Ar+O-2 and Ar+O-2+H-2. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] DC MAGNETRON REACTIVELY SPUTTERED INDIUM-TIN-OXIDE FILMS PRODUCED USING ARGON-OXYGEN-HYDROGEN MIXTURES
    HARDING, GL
    WINDOW, B
    SOLAR ENERGY MATERIALS, 1990, 20 (5-6): : 367 - 379
  • [2] Physical investigations of DC magnetron sputtered indium tin oxide films
    Uthanna, S
    Reddy, PS
    Naidu, BS
    Reddy, PJ
    VACUUM, 1996, 47 (01) : 91 - 93
  • [3] Influence of oxygen on the optical and electrical properties of magnetron-sputtered indium tin oxide thin films at ambient temperature
    Robb, Alex J.
    Duca, Zachary A.
    White, Nasiba
    Woodell, Patrick
    Ward, Patrick A.
    THIN SOLID FILMS, 2024, 788
  • [4] Properties of dc magnetron sputtered indium tin oxide films on polymeric substrates at room temperature
    Shin, JH
    Shin, SH
    Park, JI
    Kim, HH
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (09) : 5199 - 5203
  • [5] Mechanical properties of rf magnetron sputtered indium tin oxide films
    Wu, WF
    Chiou, BS
    THIN SOLID FILMS, 1997, 293 (1-2) : 244 - 250
  • [6] Elemental distribution and oxygen deficiency of magnetron sputtered indium tin oxide films
    Thogersen, Annett
    Rein, Margrethe
    Monakhov, Edouard
    Mayandi, Jeyanthinath
    Diplas, Spyros
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (11)
  • [7] Effect of oxygen concentration in the sputtering ambient on the microstructure, electrical and optical properties of radio-frequency magnetron-sputtered indium tin oxide films
    Wu, WF
    Chiou, BS
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (02) : 196 - 202
  • [8] Effect of oxygen concentration in the sputtering ambient on the microstructure, electrical and optical properties of radio-frequency magnetron-sputtered indium tin oxide films
    Natl Chiao Tung Univ, Hsinchu, Taiwan
    Semicond Sci Technol, 2 (196-202):
  • [9] THICKNESS DEPENDENCE OF THE PROPERTIES OF MAGNETRON SPUTTERED INDIUM TIN OXIDE-FILMS
    BANERJEE, R
    RAY, S
    BARUA, AK
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1987, 6 (10) : 1203 - 1204
  • [10] Effect of Hydrogen Addition on Bulk Properties of Sputtered Indium Tin Oxide Thin Films
    Juneja, Nimish
    Tutsch, Leonard
    Feldmann, Frank
    Fischer, Andreas
    Bivour, Martin
    Moldovan, Anamaria
    Hermle, Martin
    9TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2019), 2019, 2147