Convergence of scalar-flat metrics on manifolds with boundary under a Yamabe-type flow

被引:27
|
作者
Almaraz, Sergio [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, BR-24020140 Niteroi, RJ, Brazil
关键词
Yamabe flow; Manifold with boundary; Conformal metric; Scalar curvature; Mean curvature; CONSTANT MEAN-CURVATURE; EXISTENCE THEOREM; EQUATIONS; PROOF;
D O I
10.1016/j.jde.2015.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a conformal flow for compact Riemannian manifolds of dimension greater than two with boundary. Convergence to a scalar-flat metric with constant mean curvature on the boundary is established in dimensions up to seven, and in any dimensions if the manifold is spin or if it satisfies a generic condition. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2626 / 2694
页数:69
相关论文
共 50 条