On global existence and nonexistence of solutions to a quasi-linear wave equation with memory, nonlinear damping and source terms

被引:0
|
作者
Ogbiyele, Paul A. [1 ]
机构
[1] Univ Ibadan, Dept Math, Ibadan, Nigeria
关键词
Initial-boundary value problem; Galerkin and monotonicity methods; Damped wave equation; Weak solutions; Blow up; EVOLUTION-EQUATIONS; CAUCHY-PROBLEM;
D O I
10.1016/j.sciaf.2021.e00974
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider a quasi-linear wave equation with memory, nonlinear source and damping terms u(tt) - Delta ut - Sigma(n)(i=1) partial derivative/partial derivative x(i) integral(t)(0) m(t - s)uds + f (ut ) = g(u) Under some polynomial growth conditions on the nonlinear functions Sigma i (i = 1 , 2 , . . . , n ) , f and g, we obtain existence results using Galerkin and monotonicity methods. We also obtain finite time blow up result using the perturbed energy technique. (c) 2021 The Author. Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. This is an open access article under the CC BY licens ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:12
相关论文
共 50 条