Soil Moisture Retrieval of Vegetated Land Cover Using RADARSAT-2 Data

被引:0
|
作者
Kumar, Vinay [1 ]
Ahmed, Tasneem [2 ]
Singh, Dharmendra [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Elect & Commun Engn, Roorkee 247667, Uttarakhand, India
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, India
关键词
Soil moisture; synthetic aperture radar (SAR); remote sensing; RADARSAT-2; MODIS; NDVI; WATER-CONTENT; CORN; BACKSCATTER; IMAGERY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The objective of this paper is to find the soil moisture of the vegetated land cover using data fusion approach between C-band SAR and optical data. For which we are using RADARSAT-2 and MODIS data and Dubois model were used to evaluate the soil moisture of vegetated land cover. The principle behind this fusion approach is that the backscattering coefficient of RADARSAT-2 data contains information regarding vegetation and soil (by volume scattering from vegetation and surface scattering from underlying soil), whereas MODIS data contains information regarding vegetation. Dubois model is used because it is easy to implement on data and it gives satisfactory result. In this paper using land survey data, first we have find the relation between normalized backscattering coefficient and NDVI (Normalized difference vegetation index) and after getting relationship we have used it on test area.
引用
收藏
页码:276 / 281
页数:6
相关论文
共 50 条
  • [1] SOIL MOISTURE RETRIEVAL IN WELL COVERED FARMLAND BY RADARSAT-2 SAR DATA
    Yue, Jibo
    Yang, Guijun
    Qi, Xiudong
    Wang, Yanjie
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1699 - 1702
  • [2] SOIL MOISTURE RETRIEVAL USING MODIFIED VEGETATION BACKSCATTERING MODEL BASED ON RADARSAT-2 DATA
    Tao, Liangliang
    Wang, Guojie
    He, Shi
    Chen, Xi
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9102 - 9105
  • [3] SOIL MOISTURE RETRIEVAL USING RADARSAT-2 AND HJ-1 CCD DATA IN GRASSLAND
    Xing, Minfeng
    He, Binbin
    Li, Xiaowen
    Quan, Xingwen
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [4] Polarimetric RADARSAT-2 imagery for soil moisture retrieval in alpine areas
    Pasolli, L.
    Notarnicola, C.
    Bruzzone, L.
    Bertoldi, G.
    Della Chiesa, S.
    Niedrist, G.
    Tappeiner, U.
    Zebisch, M.
    CANADIAN JOURNAL OF REMOTE SENSING, 2011, 37 (05) : 535 - 547
  • [5] Stochastic bias correction for RADARSAT-2 soil moisture retrieved over vegetated areas
    Lee, Ju Hyoung
    Budhathoki, Sujata
    Lindenschmidt, Karl-Erich
    GEOCARTO INTERNATIONAL, 2021, 37 (25) : 9190 - 9203
  • [6] Mapping Soil Moisture Using RADARSAT-2 Data and Local Autocorrelation Statistics
    Merzouki, Amine
    McNairn, Heather
    Pacheco, Anna
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (01) : 128 - 137
  • [7] AN IMPEDANCE BASED APPROACH TO DETERMINE SOIL MOISTURE USING RADARSAT-2 DATA
    Mishra, Pooja
    Goel, Shivangi
    Singh, Dharmendra
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2724 - 2727
  • [8] Land Cover Classification of RADARSAT-2 SAR Data Using Convolutional Neural Network
    LIN Wei
    LIAO Xiangyong
    DENG Juan
    LIU Yao
    WuhanUniversityJournalofNaturalSciences, 2016, 21 (02) : 151 - 158
  • [9] Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data
    Duguay, Yannick
    Bernier, Monique
    Levesque, Esther
    Domine, Florent
    REMOTE SENSING, 2016, 8 (09)
  • [10] Improving the Accuracy of Urban Land Cover Classification Using Radarsat-2 PolSAR Data
    Salehi, Maryam
    Sahebi, Mahmod Reza
    Maghsoudi, Yasser
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (04) : 1394 - 1401