New branch-and-cut algorithm for bilevel linear programming

被引:43
|
作者
Audet, C.
Savard, G. [1 ]
Zghal, W.
机构
[1] Ecole Hautes Etud Commerciales, Gerad, Montreal, PQ, Canada
[2] Ecole Polytech, Montreal, PQ H3C 3A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bilevel linear programming; Gomory cuts; linear mixed 0-1 integer programming; branch-and-cut algorithms;
D O I
10.1007/s10957-007-9263-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Linear mixed 0-1 integer programming problems may be reformulated as equivalent continuous bilevel linear programming (BLP) problems. We exploit these equivalences to transpose the concept of mixed 0-1 Gomory cuts to BLP. The first phase of our new algorithm generates Gomory-like cuts. The second phase consists of a branch-and-bound procedure to ensure finite termination with a global optimal solution. Different features of the algorithm, in particular, the cut selection and branching criteria are studied in details. We propose also a set of algorithmic tests and procedures to improve the method. Finally, we illustrate the performance through numerical experiments. Our algorithm outperforms pure branch-and-bound when tested on a series of randomly generated problems.
引用
收藏
页码:353 / 370
页数:18
相关论文
共 50 条
  • [1] New Branch-and-Cut Algorithm for Bilevel Linear Programming
    C. Audet
    G. Savard
    W. Zghal
    Journal of Optimization Theory and Applications, 2007, 134 : 353 - 370
  • [2] A Branch-and-cut Algorithm for Integer Bilevel Linear Programs
    DeNegre, S. T.
    Ralphs, T. K.
    OPERATIONS RESEARCH AND CYBER-INFRASTRUCTURE, 2009, : 65 - 78
  • [3] A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation
    Tahernejad, Sahar
    Ralphs, Ted K.
    DeNegre, Scott T.
    MATHEMATICAL PROGRAMMING COMPUTATION, 2020, 12 (04) : 529 - 568
  • [4] A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation
    Sahar Tahernejad
    Ted K. Ralphs
    Scott T. DeNegre
    Mathematical Programming Computation, 2020, 12 : 529 - 568
  • [5] A branch-and-cut algorithm for Mixed-Integer Bilinear Programming
    Fischetti, Matteo
    Monaci, Michele
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 282 (02) : 506 - 514
  • [6] A Semidefinite Programming-Based Branch-and-Cut Algorithm for Biclustering
    Sudoso, Antonio M.
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [7] The ring-star problem: A new integer programming formulation and a branch-and-cut algorithm
    Simonetti, L.
    Frota, Y.
    de Souza, C. C.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1901 - 1914
  • [8] An extended branch and bound algorithm for linear bilevel programming
    Shi, Chenggen
    Lu, Jie
    Zhang, Guangquan
    Zhou, Hong
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (02) : 529 - 537
  • [9] Branch-and-cut algorithm for the equicut problem
    Universita degli Studi di Padova, Padova, Italy
    Math Program Ser B, 2 (243-263):
  • [10] A Branch-and-Cut Algorithm for Partition Coloring
    Frota, Yuri
    Maculan, Nelson
    Noronha, Thiago F.
    Ribeiro, Celso C.
    NETWORKS, 2010, 55 (03) : 194 - 204