Future Mission Design Options for Spatio-Temporal Geopotential Recovery

被引:10
|
作者
Reubelt, T. [1 ]
Sneeuw, N. [1 ]
Sharifi, M. A. [1 ]
机构
[1] Univ Stuttgart, Inst Geodesy, D-70174 Stuttgart, Germany
来源
关键词
D O I
10.1007/978-3-642-10634-7_22
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sampling the Earth from single-satellite missions or single-orbit formations is necessarily limited by the mandatory balance between spatial and temporal resolution. A short repeat period leads to sparse ground-track spacing. Conversely, dense satellite coverage can only be attained at the cost of time resolution. For future gravity field missions, geoscience communities are pushing for ever higher resolution than GRACE, both in time and space. A logical consequence would be multi-satellite and/or multi-groundtrack configurations. We investigate the basic parameters that determine space-time resolution. Under the assumption of a repeat orbit two basic rules for sampling the Earth from space are provided. The familiar Nyquist rule of thumb links the number of revolutions in a repeat period to the maximum spherical harmonic degree. A second sampling rule, expressing the balance between spatial and temporal resolution, is coined the Heisenberg rule. Simulations demonstrate how future mission concepts might benefit from multi-satellite/multi-groundtrack configurations.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 50 条
  • [1] Spatio-temporal Structure of Diurnal and Semidiurnal Tides in Geopotential Height Field
    Cho, Hyeong-Oh
    Son, Seok-Woo
    Lee, Yong-Hee
    JOURNAL OF THE KOREAN EARTH SCIENCE SOCIETY, 2016, 37 (07): : 465 - 475
  • [2] Probabilistic Robust Route Recovery with Spatio-Temporal Dynamics
    Wu, Hao
    Mao, Jiangyun
    Sun, Weiwei
    Zheng, Baihua
    Zhang, Hanyuan
    Chen, Ziyang
    Wang, Wei
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1915 - 1924
  • [3] Spatio-temporal design of strip cropping systems
    Juventia, Stella D.
    Noren, Isabella L. M. Selin
    Apeldoorn, Dirk F. van
    Ditzler, Lenora
    Rossing, Walter A. H.
    AGRICULTURAL SYSTEMS, 2022, 201
  • [4] Neural method of spatio-temporal filters design
    Szostakowski, J
    STATISTICAL AND STOCHASTIC METHODS IN IMAGE PROCESSING II, 1997, 3167 : 35 - 45
  • [5] Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics
    Duan L.
    Hu T.
    Zhu X.
    Ye X.
    Wang S.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 765 - 770
  • [6] Spatio-temporal reasoning based spatio-temporal information management middleware
    Wang, SS
    Liu, DY
    Wang, Z
    ADVANCED WEB TECHNOLOGIES AND APPLICATIONS, 2004, 3007 : 436 - 441
  • [7] Spatio-temporal characteristics of the recent rainfall recovery in West Africa
    Sanogo, Souleymane
    Fink, Andreas H.
    Omotosho, Jerome A.
    Ba, Abdramane
    Redl, Robert
    Ermert, Volker
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2015, 35 (15) : 4589 - 4605
  • [8] Spatio-Temporal Reconstruction for 3D Motion Recovery
    Yang, Jingyu
    Guo, Xin
    Li, Kun
    Wang, Meiyuan
    Lai, Yu-Kun
    Wu, Feng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1583 - 1596
  • [9] Spatio-Temporal Kronecker Compressive Sensing for Traffic Matrix Recovery
    Jiang, Dingde
    Nie, Laisen
    Lv, Zhihan
    Song, Houbing
    IEEE ACCESS, 2016, 4 : 3046 - 3053
  • [10] Background Subtraction Using Spatio-Temporal Group Sparsity Recovery
    Liu, Xin
    Yao, Jiawen
    Hong, Xiaopeng
    Huang, Xiaohua
    Zhou, Ziheng
    Qi, Chun
    Zhao, Guoying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (08) : 1737 - 1751