Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice

被引:124
|
作者
Tamarat, R
Silvestre, JS
Huijberts, M
Benessiano, J
Ebrahimian, TG
Duriez, M
Wautier, MP
Wautier, JL
Lévy, BI
机构
[1] Univ Paris 07, Hop Lariboisiere, INSERM, U541,Inst Fed Rech Circulat, F-75475 Paris 10, France
[2] INSERM, U76, F-75739 Paris 15, France
[3] Inst Natl Transfus Sanguine, F-75739 Paris, France
[4] Cardiovasc Res Inst Maastricht, NL-6202 AZ Maastricht, Netherlands
关键词
D O I
10.1073/pnas.1236929100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metailoproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.
引用
收藏
页码:8555 / 8560
页数:6
相关论文
共 50 条
  • [1] Blockade of advanced glycation end products restores ischemia-induced angiogenesis in diabetic mice
    Tamarat, R
    Silvestre, JS
    Huijberts, M
    Benessiano, J
    Duriez, M
    Wautier, JL
    Wautier, MP
    CIRCULATION, 2002, 106 (19) : 275 - 275
  • [2] Blockade of advanced glycation end products restores ischemia-induced angiogenesis in diabetic mice
    Tarnarat, R
    Silvestre, JS
    Huijberts, M
    Benessiano, J
    Duriez, M
    Wautier, JL
    Wautier, MP
    Levy, BI
    HYPERTENSION, 2002, 40 (04) : 572 - 572
  • [3] Effect of simvastatin on advanced glycation end-product induced angiogenesis
    Ali, N.
    Matou-Nasri, S.
    Slevin, M.
    Nessar, A.
    DIABETIC MEDICINE, 2013, 30 : 65 - 65
  • [4] Glycation and advanced glycation end-product formation with icodextrin and dextrose
    Dawnay, ABSJ
    Millar, DJ
    PERITONEAL DIALYSIS INTERNATIONAL, 1997, 17 (01): : 52 - 58
  • [5] Pioglitazone ameliorates endothelial dysfunction and restores ischemia-induced angiogenesis in diabetic mice
    Huang, Po-Hsun
    Sata, Masataka
    Nishimatsu, Hiroaki
    Sumi, Makoto
    Hirata, Yasunobu
    Nagai, Ryozo
    BIOMEDICINE & PHARMACOTHERAPY, 2008, 62 (01) : 46 - 52
  • [6] Does combined blockade of RAS and advanced glycation end-product formation confer superior renoprotection in a hypertensive model of diabetic nephropathy?
    Davis, BJ
    Forbes, JM
    Jerums, G
    Cooper, ME
    Allen, TJ
    JOURNAL OF HYPERTENSION, 2002, 20 : S57 - S57
  • [7] SIGNIFICANCE OF FRUCTOSE-INDUCED PROTEIN OXIDATION AND FORMATION OF ADVANCED GLYCATION END-PRODUCT
    TAKAGI, Y
    KASHIWAGI, A
    TANAKA, Y
    ASAHINA, T
    KIKKAWA, R
    SHIGETA, Y
    JOURNAL OF DIABETES AND ITS COMPLICATIONS, 1995, 9 (02) : 87 - 91
  • [8] Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice
    Goova, MT
    Li, J
    Kislinger, T
    Qu, W
    Lu, Y
    Bucciarelli, LG
    Nowygrod, S
    Wolf, BM
    Caliste, X
    Yan, SF
    Stern, DM
    Schmidt, AM
    AMERICAN JOURNAL OF PATHOLOGY, 2001, 159 (02): : 513 - 525
  • [9] Pioglitazone Attenuates Atherosclerosis in Diabetic Mice by Inhibition of Receptor for Advanced Glycation End-Product (RAGE) Signaling
    Gao, Hongli
    Li, Hongwei
    Li, Weiping
    Shen, Xuhua
    Di, Beibing
    MEDICAL SCIENCE MONITOR, 2017, 23 : 6121 - 6131
  • [10] GLUCOSE, GLYCATED HAEMOGLOBINAND ADVANCED GLYCATION END-PRODUCT IN TUNISIAN DIABETIC PATIENTS
    Soualhia, A.
    Chahed, H.
    Daboubi, R.
    Ben Iimam, H.
    Ferchichi, S.
    Bousrih, H.
    Chaieb, M.
    Chaieb, L.
    Maatoug, F.
    Miled, A.
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2011, 49 : S369 - S369