Parametric algorithms for mining share frequent itemsets

被引:8
|
作者
Barber, B [1 ]
Hamilton, HJ [1 ]
机构
[1] Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
knowledge discovery; data mining; itemsets; association rule mining; share based measures;
D O I
10.1023/A:1011276003319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Itemset share, the fraction of some numerical total contributed by items when they occur in itemsets, has been proposed as a measure of the importance of itemsets in association rule mining. The IAB and CAC algorithms are able to find share frequent itemsets that have infrequent subsets. These algorithms perform well, but they do not always find all possible share frequent itemsets. In this paper, we describe the incorporation of a threshold factor into these algorithms. The threshold factor can be used to increase the number of frequent itemsets found at a cost of an increase in the number of infrequent itemsets examined. The modified algorithms are tested on a large commercial database. Their behavior is examined using principles of classifier evaluation from machine learning.
引用
收藏
页码:277 / 293
页数:17
相关论文
共 50 条
  • [1] Parametric Algorithms for Mining Share Frequent Itemsets
    Brock Barber
    HOWARD J. HAMILTON
    Journal of Intelligent Information Systems, 2001, 16 : 277 - 293
  • [2] Algorithms for Mining Share Frequent Itemsets Containing Infrequent Subsets
    Barber, Brock
    Hamilton, Howard J.
    LECTURE NOTES IN COMPUTER SCIENCE <D>, 2000, 1910 : 316 - 324
  • [3] Efficient mining frequent itemsets algorithms
    Marghny H. Mohamed
    Mohammed M. Darwieesh
    International Journal of Machine Learning and Cybernetics, 2014, 5 : 823 - 833
  • [4] Efficient mining frequent itemsets algorithms
    Mohamed, Marghny H.
    Darwieesh, Mohammed M.
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2014, 5 (06) : 823 - 833
  • [5] An Incremental Approach to Share-Frequent Itemsets Mining
    Nawapornanan, Chayanan
    Intakosum, Sarun
    Boonjing, Veera
    THAI JOURNAL OF MATHEMATICS, 2018, 16 (01): : 1 - 23
  • [6] A Comparative Analysis of Algorithms for Mining Frequent Itemsets
    Busarov, Vyacheslav
    Grafeeva, Natalia
    Mikhailova, Elena
    DATABASES AND INFORMATION SYSTEMS, DB&IS 2016, 2016, 615 : 136 - 150
  • [7] Effective algorithms for mining frequent-utility itemsets
    Liu, Xuan
    Chen, Genlang
    Wen, Shiting
    Huang, Jingfang
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024, 36 (08) : 1533 - 1560
  • [8] Algorithms for mining frequent itemsets in static and dynamic datasets
    Hernandez-Leon, R.
    Hernandez-Palancar, J.
    Carrasco-Ochoa, Jesus A.
    Fco Martinez-Trinidad, Jose
    INTELLIGENT DATA ANALYSIS, 2010, 14 (03) : 419 - 435
  • [9] REVIEW OF HEURISTIC ALGORITHMS FOR FREQUENT ITEMSETS MINING PROBLEM
    Barik, Meryem
    Hafidi, Imad
    Rochd, Yassir
    COMPUTING AND INFORMATICS, 2023, 42 (06) : 1360 - 1377
  • [10] Fast Algorithms for Mining Multiple Fuzzy Frequent Itemsets
    Lin, Jerry Chun-Wei
    Li, Ting
    Fournier-Viger, Philippe
    Hong, Tzung-Pei
    Su, Ja-Hwung
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 2113 - 2119