An efficient problem-independent hardware implementation of genetic algorithms

被引:24
|
作者
Nedjah, Nadia
Mourelle, Luiza de Macedo [1 ]
机构
[1] Univ Estado Rio De Janeiro, Fac Engn, Dept Syst Engn & Computat, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Fac Engn, Dept Elect & Telecommun Engn, Rio De Janeiro, Brazil
关键词
genetic algorithms; neural network; hardware;
D O I
10.1016/j.neucom.2006.11.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a massively parallel architecture for hardware implementation of genetic algorithms. This design is quite innovative as it provides a viable solution to the fitness computation problem, which depends heavily on the problem-specific knowledge. The proposed architecture is completely independent of such specifics. It implements the fitness computation using a neural network. The hardware implementation of the used neural network is stochastic and thus minimise the required hardware area without much increase in response time. Last but not least, we demonstrate the characteristics of the proposed hardware and compare it to existing ones. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 94
页数:7
相关论文
共 50 条
  • [1] Problem-independent schema synthesis for genetic algorithms
    Kim, YH
    Kwon, YK
    Moon, BR
    GENETIC AND EVOLUTIONARY COMPUTATION - GECCO 2003, PT I, PROCEEDINGS, 2003, 2723 : 1112 - 1122
  • [2] An efficient implementation of Genetic Algorithms for constrained Vehicle Routing Problem
    Filipec, M
    Skrlec, D
    Krajcar, S
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2231 - 2236
  • [3] Efficient implementation of genetic algorithms
    Li, Xiaobo
    Lin, Zhenghui
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 32 (01): : 5 - 7
  • [4] Efficient implementation of cellular algorithms on reconfigurable hardware
    Corsonello, P
    Spezzano, G
    Staino, G
    Talia, D
    10TH EUROMICRO WORKSHOP ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, PROCEEDINGS, 2002, : 211 - 218
  • [5] Aspects of genetic algorithms in evolvable hardware implementation
    Negoita, MG
    Dediu, AH
    Mihaila, D
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 682 - 685
  • [6] Hardware implementation of genetic algorithms for VLSI design
    Koonar, G
    Areibi, S
    Moussa, MA
    COMPUTER APPLICATIONS IN INDUSTRY AND ENGINEERING, 2002, : 197 - 200
  • [7] A hardware implementation of genetic algorithms for measurement characterization
    Sharawi, MS
    Quinlan, J
    Abdel-Aty-Zohdy, HS
    ICES 2002: 9TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-111, CONFERENCE PROCEEDINGS, 2002, : 1267 - 1270
  • [8] Hardware implementation of genetic algorithms using FPGA
    Tang, W
    Yip, L
    2004 47TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL I, CONFERENCE PROCEEDINGS, 2004, : 549 - 552
  • [9] Problem-Independent Approach to Multiprocessor Dependent Task Scheduling
    Krol, Dawid
    Zydek, Dawid
    Koszalka, Leszek
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, 58 (04) : 369 - 379
  • [10] Efficient Hardware Implementation of Snapshotting Algorithms for NoC Applications
    Zene, Andrei
    Chirap, Claudiu-Teodor
    Cret, Octavian
    Vacariu, Lucia
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2015, 18 (01): : 79 - 92