ALMOST ORTHOGONALITY AND HAUSDORFF INTERVAL TOPOLOGIES OF ATOMIC LATTICE EFFECT ALGEBRAS

被引:0
|
作者
Paseka, Jan [1 ]
Riecanova, Zdenka [2 ]
Wu Junde [3 ]
机构
[1] Masaryk Univ, Fac Sci, Dept Math & Stat, CS-61137 Brno, Czech Republic
[2] Slovak Univ Technol Bratislava, Fac Elect Engn & Informat Technol, Dept Math, Bratislava 81219, Slovakia
[3] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
non-classical logics; D-posets; effect algebras; MV-algebras; interval and order topology; states;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets of elements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of circle plus-operation in the order and interval topologies on them.
引用
收藏
页码:953 / 970
页数:18
相关论文
共 50 条
  • [1] Almost Orthogonality and Hausdorff Interval Topologies of de Morgan Lattices and Lattice Effect Algebras
    Paseka, Jan
    Wu Junde
    Lei Qiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (06) : 2055 - 2064
  • [2] Almost Orthogonality and Hausdorff Interval Topologies of de Morgan Lattices and Lattice Effect Algebras
    Jan Paseka
    Wu Junde
    Lei Qiang
    International Journal of Theoretical Physics, 2013, 52 : 2055 - 2064
  • [3] Convergence structures and Hausdorff uo-Lebesgue topologies on vector lattice algebras of operators
    Yang Deng
    Marcel de Jeu
    Positivity, 2022, 26
  • [4] Convergence structures and Hausdorff uo-Lebesgue topologies on vector lattice algebras of operators
    Deng, Yang
    de Jeu, Marcel
    POSITIVITY, 2022, 26 (04)
  • [5] Interval topology of lattice effect algebras
    Lei Qiang
    Wu Junde
    Li Ronglu
    APPLIED MATHEMATICS LETTERS, 2009, 22 (07) : 1003 - 1006
  • [6] On the convergence of almost minimal sets for the Hausdorff and varifold topologies
    Fang, Yangqin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 133 : 329 - 354
  • [7] Archimedean Atomic Lattice Effect Algebras with Complete Lattice of Sharp Elements
    Riecanova, Zdenka
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [8] ON CENTRAL ATOMS OF ARCHIMEDEAN ATOMIC LATTICE EFFECT ALGEBRAS
    Kalina, Martin
    KYBERNETIKA, 2010, 46 (04) : 609 - 620
  • [9] Convergence structures and Hausdorff uo-Lebesgue topologies on vector lattice algebras of operators (vol 26, pg 1, 2022)
    Deng, Yang
    de Jeu, Marcel
    POSITIVITY, 2023, 27 (01)
  • [10] On Power Idealization Filter Topologies of Lattice Implication Algebras
    Bai, Shi-Zhong
    Wu, Xiu-Yun
    SCIENTIFIC WORLD JOURNAL, 2014,