Mapping Crop Types Using Sentinel-2 Data Machine Learning and Monitoring Crop Phenology with Sentinel-1 Backscatter Time Series in Pays de Brest, Brittany, France

被引:21
|
作者
Xie, Guanyao [1 ]
Niculescu, Simona [1 ,2 ]
机构
[1] IUEM UBO, Lab LETG Brest, Geomer, UMR 6554 CNRS, F-29200 Brest, France
[2] Univ Western Brittany, Dept Geog, 3 Rue Archives, F-29238 Brest, France
关键词
winter crops mapping; winter crops phenology; machine learning; hierarchical classification; object-based classification; pixel-based classification; Google Earth Engine (GEE); Sentinel-1; Sentinel-2; RANDOM FOREST; CLASSIFICATION ACCURACY; VEGETATION; COVER; INDEX; NDVI; SEGMENTATION; SAR; MULTIRESOLUTION; SENSITIVITY;
D O I
10.3390/rs14184437
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crop supply and management is a global issue, particularly in the context of global climate change and rising urbanization. Accurate mapping and monitoring of specific crop types are crucial for crop studies. In this study, we proposed: (1) a methodology to map two main winter crops (winter wheat and winter barley) in the northern region of Finistere with high-resolution Sentinel-2 data. Different classification approaches (the hierarchical classification and the classical direct extraction), and classification methods (pixel-based classification (PBC) and object-based classification (OBC)) were performed and evaluated. Subsequently, (2) a further study that involved monitoring the phenology of the winter crops was carried out, based on the previous results. The aim is to understand the temporal behavior from sowing to harvesting, identifying three important phenological statuses (germination, heading, and ripening, including harvesting). Due to the high frequency of precipitation in our study area, crop phenology monitoring was performed using Sentinel-1 C-band SAR backscatter time series data using the Google Earth Engine (GEE) platform. The results of the classification showed that the hierarchical classification achieved a better accuracy when it is compared to the direct extraction, with an overall accuracy of 0.932 and a kappa coefficient of 0.888. Moreover, in the hierarchical classification process, OBC reached a better accuracy in cropland mapping, and PBC was proven more suitable for winter crop extraction. Additionally, in the time series backscatter coefficient of winter wheat, the germination and ripening (harvesting) phases can be identified at VV and VH/VV polarizations, and heading can be identified in both VV and VH polarizations. Secondly, we were able to detect the germination phase of winter barley in VV and VH, ripening with both polarizations and VH/VV, and finally, heading in VV and VH polarizations.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Random Forest Classification using Sentinel-1 and Sentinel-2 series for vegetation monitoring in the Pays de Brest (France)
    Niculescu, Simona
    Billey, Antoine
    Talab-Ouali, Halima
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [2] Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany
    Blickensdoerfer, Lukas
    Schwieder, Marcel
    Pflugmacher, Dirk
    Nendel, Claas
    Erasmi, Stefan
    Hostert, Patrick
    REMOTE SENSING OF ENVIRONMENT, 2022, 269
  • [3] Monitoring Irrigation Events and Crop Dynamics Using Sentinel-1 and Sentinel-2 Time Series
    Ma, Chunfeng
    Johansen, Kasper
    McCabe, Matthew F.
    REMOTE SENSING, 2022, 14 (05)
  • [4] Mapping Crop Types of Germany by Combining Temporal Statistical Metrics of Sentinel-1 and Sentinel-2 Time Series with LPIS Data
    Asam, Sarah
    Gessner, Ursula
    Gonzalez, Roger Almengor
    Wenzl, Martina
    Kriese, Jennifer
    Kuenzer, Claudia
    REMOTE SENSING, 2022, 14 (13)
  • [5] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Wheat-Crop Height Monitoring Using Machine Learning
    Nduku, Lwandile
    Munghemezulu, Cilence
    Mashaba-Munghemezulu, Zinhle
    Ratshiedana, Phathutshedzo Eugene
    Sibanda, Sipho
    Chirima, Johannes George
    AGRIENGINEERING, 2024, 6 (02): : 1093 - 1116
  • [6] CROP TYPE MAPPING BASED ON SENTINEL-1 BACKSCATTER TIME SERIES
    Arias, M.
    Campo-Bescos, M. A.
    Alvarez-Mozos, J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6623 - 6626
  • [7] Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data
    Feng, Siwen
    Zhao, Jianjun
    Liu, Tingting
    Zhang, Hongyan
    Zhang, Zhengxiang
    Guo, Xiaoyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (09) : 3295 - 3306
  • [8] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3
  • [9] Contribution of the New satellites (Sentinel-1, Sentinel-2 and SPOT-6) to the Coastal Vegetation Monitoring in the Pays de Brest (France)
    Halima, Talab-Ou-Ali
    Simona, Niculescu
    Vanessa, Sellin
    Christophe, Bougault
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XIX, 2017, 10421
  • [10] Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery
    Notarnicola, C.
    Asam, S.
    Jacob, A.
    Marin, C.
    Rossi, M.
    Stendardi, L.
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,