Lower Bounds for Oblivious Subspace Embeddings

被引:0
|
作者
Nelson, Jelani [1 ]
Nguyen, Huy L. [2 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] Princeton Univ, Princeton, NJ 08540 USA
关键词
JOHNSON;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An oblivious subspace embedding (OSE) for some epsilon, delta is an element of (0, 1/3) and d <= m <= n is a distribution D over R-mxn such that P-Pi similar to D (for all x is an element of W, (1 - epsilon) parallel to x parallel to 2 <= parallel to Pi x parallel to 2 = (1 + epsilon)parallel to x parallel to 2) >= 1 - delta for any linear subspace W subset of R-n of dimension d. We prove any OSE with delta < 1/3 has m = Omega((d + log(1/delta))/epsilon(2)), which is optimal. Furthermore, if every. in the support of D is sparse, having at most s non-zero entries per column, we show tradeoff lower bounds between m and s.
引用
收藏
页码:883 / 894
页数:12
相关论文
共 50 条
  • [1] Lower Bounds for Sparse Oblivious Subspace Embeddings
    Li, Yi
    Liu, Mingmou
    PROCEEDINGS OF THE 41ST ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (PODS '22), 2022, : 251 - 260
  • [2] Tight Bounds for l1 Oblivious Subspace Embeddings
    Wang, Ruosong
    Woodruff, David P.
    ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (01)
  • [3] On a Connection Between Fast and Sparse Oblivious Subspace Embeddings
    Wang, Rui
    Xu, Wangli
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [4] LOWER MEMORY OBLIVIOUS (TENSOR) SUBSPACE EMBEDDINGS WITH FEWER RANDOM BITS: MODEWISE METHODS FOR LEAST SQUARES
    Iwen, Mark A.
    Needell, Deanna
    Rebrova, Elizaveta
    Zare, Ali
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (01) : 376 - 416
  • [5] LOWER BOUNDS FOR QUANTUM OBLIVIOUS TRANSFER
    Chailloux, Andre
    Kerenidis, Iordanis
    Sikora, Jamie
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (1-2) : 158 - 177
  • [6] Lower bounds for Quantum Oblivious Transfer
    Chailloux, Andre
    Kerenidis, Iordanis
    Sikora, Jamie
    IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2010), 2010, 8 : 157 - 168
  • [7] Lower bounds for quantum oblivious transfer
    Chailloux, A., 2013, Rinton Press Inc. (13): : 1 - 2
  • [8] Lower bounds for oblivious transfer reductions
    Dodis, Y
    Micali, S
    ADVANCES IN CRYPTOLOGY - EUROCRYPT'99, 1999, 1592 : 42 - 55
  • [9] Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional Optimization: Sharp Analysis and Lower Bounds
    Lacotte, Jonathan
    Pilanci, Mert
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3281 - 3303
  • [10] Semi-oblivious Routing: Lower Bounds
    Hajiaghayi, MohammadTaghi
    Kleinberg, Robert
    Leighton, Tom
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 929 - +