A self-healing water-dissolvable and stretchable cellulose-hydrogel for strain sensor

被引:24
|
作者
Wang, Huiqiang [1 ]
Yu, Xin [1 ]
Tang, Xing [1 ,2 ]
Sun, Yong [1 ,2 ]
Zeng, Xianhai [1 ,2 ]
Lin, Lu [1 ,2 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361102, Peoples R China
[2] Xiamen Univ, Fujian Engn & Res Ctr Clean & High Valued Technol, Xiamen Key Lab High Valued Utilizat Biomass, Xiamen 361102, Peoples R China
关键词
Hydrogel; Deep eutectic solvent; Water dissolvable; Self-healing; Strain sensor; HIGH-STRENGTH; ADHESIVE; NETWORK; TOUGH;
D O I
10.1007/s10570-021-04321-8
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
The flexible hydrogel sensors in the field of artificial intelligence have been widely concerned, which could be applied in medical monitoring, human motion detection, and intelligent robots. However, the integration of the synergistic properties of excellent mechanical properties, temperature sensitivity, adhesion ability and self-healing ability for preparation of hydrogel-type strain sensor is still a challenge. Moreover, how can we recover cumulated sensors without affecting the environment? Herein, a self-healing hydrogel was prepared based on deep eutectic solvent (DES) combined with polyvinyl alcohol (PVA), and cellulose nanocrystals (CNCs), which has the peotential application as wearable strain sensors. The DES network crosslinks PVA/CMC-Na/CNCs through ionic bonds, and the overall network is further linked through physical entanglement and hydrogen bonding interactions. Interestingly, the hydrogel could sensitively detect large or subtle movements (such as finger bending, wrist bending, knee bending, pulse and pronounce), indicating its potential applications in human-computer interaction and personal health monitoring.
引用
收藏
页码:341 / 354
页数:14
相关论文
共 50 条
  • [1] A self-healing water-dissolvable and stretchable cellulose-hydrogel for strain sensor
    Huiqiang Wang
    Xin Yu
    Xing Tang
    Yong Sun
    Xianhai Zeng
    Lu Lin
    Cellulose, 2022, 29 : 341 - 354
  • [2] Self-Healing and Highly Stretchable Gelatin Hydrogel for Self-Powered Strain Sensor
    Wang, Jie
    Tang, Fu
    Wang, Yue
    Lu, Qipeng
    Liu, Shuqi
    Li, Lidong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 1558 - 1566
  • [3] Polydiacetylene hydrogel self-healing capacitive strain sensor
    Rao, V. Kesava
    Shauloff, Nitzan
    Sui, XiaoMeng
    Wagner, H. Daniel
    Jelinek, Raz
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (18) : 6034 - 6041
  • [4] Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application
    Jiao, Yue
    Lu, Ya
    Lu, Kaiyue
    Yue, Yiying
    Xu, Xinwu
    Xiao, Huining
    Li, Jian
    Han, Jingquan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 597 : 171 - 181
  • [5] Highly Stretchable and Self-Healing Strain Sensor Based on Gellan Gum Hybrid Hydrogel for Human Motion Monitoring
    Liu, Sijun
    Qiu, Yan
    Yu, Wei
    Zhang, Hongbin
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (03): : 1325 - 1334
  • [6] A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor
    Wang, Man
    Chen, Yujie
    Khan, Rajwali
    Liu, Hezhou
    Chen, Chi
    Chen, Tao
    Zhang, Runjing
    Li, Hua
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 567 : 139 - 149
  • [7] Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel
    Yue Jiao
    Kaiyue Lu
    Ya Lu
    Yiying Yue
    Xinwu Xu
    Huining Xiao
    Jian Li
    Jingquan Han
    Cellulose, 2021, 28 : 4295 - 4311
  • [8] Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel
    Jiao, Yue
    Lu, Kaiyue
    Lu, Ya
    Yue, Yiying
    Xu, Xinwu
    Xiao, Huining
    Li, Jian
    Han, Jingquan
    CELLULOSE, 2021, 28 (07) : 4295 - 4311
  • [9] Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring
    Li, Xing
    Ma, Yinghui
    Li, Dacheng
    Lu, Shaorong
    Li, Yuqi
    Li, Ziwei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 223 : 1530 - 1538
  • [10] A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel
    Yin, Jianyu
    Pan, Shenxin
    Wu, Lili
    Tan, Liyina
    Chen, Di
    Huang, Shan
    Zhang, Yuhong
    He, Peixin
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (48) : 17349 - 17364