A Novel Deep Learning Approach for Anomaly Detection of Time Series Data

被引:20
|
作者
Ji, Zhiwei [1 ]
Gong, Jiaheng [2 ]
Feng, Jiarui [1 ]
机构
[1] Nanjing Agr Univ, Coll Artificial Intelligence, 1 Weigang Rd, Nanjing 210095, Jiangsu, Peoples R China
[2] Zhejiang Gongshang Univ, Sch Informat & Elect Engn, 18 Xuezheng St, Hangzhou 311300, Peoples R China
基金
美国国家科学基金会;
关键词
K-MEANS; RECOGNITION;
D O I
10.1155/2021/6636270
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Anomalies in time series, also called "discord," are the abnormal subsequences. The occurrence of anomalies in time series may indicate that some faults or disease will occur soon. Therefore, development of novel computational approaches for anomaly detection (discord search) in time series is of great significance for state monitoring and early warning of real-time system. Previous studies show that many algorithms were successfully developed and were used for anomaly classification, e.g., health monitoring, traffic detection, and intrusion detection. However, the anomaly detection of time series was not well studied. In this paper, we proposed a long short-term memory- (LSTM-) based anomaly detection method (LSTMAD) for discord search from univariate time series data. LSTMAD learns the structural features from normal (nonanomalous) training data and then performs anomaly detection via a statistical strategy based on the prediction error for observed data. In our experimental evaluation using public ECG datasets and real-world datasets, LSTMAD detects anomalies more accurately than other existing approaches in comparison.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Applications of Anomaly Detection using Deep Learning on Time Series Data
    Van Quan Nguyen
    Linh Van Ma
    Kim, Jin-young
    Kim, Kwangki
    Kim, Jinsul
    2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH), 2018, : 393 - 396
  • [2] DeepAnT: A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series
    Munir, Mohsin
    Siddiqui, Shoaib Ahmed
    Dengel, Andreas
    Ahmed, Sheraz
    IEEE ACCESS, 2019, 7 : 1991 - 2005
  • [3] A deep learning approach for anomaly detection with industrial time series data: a refrigerators manufacturing case study
    Carletti, Mattia
    Masiero, Chiara
    Beghi, Alessandro
    Susto, Gian Antonio
    29TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING (FAIM 2019): BEYOND INDUSTRY 4.0: INDUSTRIAL ADVANCES, ENGINEERING EDUCATION AND INTELLIGENT MANUFACTURING, 2019, 38 : 233 - 240
  • [4] Towards Deep Industrial Transfer Learning for Anomaly Detection on Time Series Data
    Maschler, Benjamin
    Knodel, Tim
    Weyrich, Michael
    2021 26TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2021,
  • [5] Deep Learning for Time Series Anomaly Detection: A Survey
    Darban, Zahra zamanzadeh
    Webb, Geoffrey i.
    Pan, Shirui
    Aggarwal, Charu
    Salehi, Mahsa
    ACM COMPUTING SURVEYS, 2025, 57 (01)
  • [6] Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines
    Choi, Kukjin
    Yi, Jihun
    Park, Changhwa
    Yoon, Sungroh
    IEEE ACCESS, 2021, 9 : 120043 - 120065
  • [7] Hybrid approach for Anomaly Detection in Time Series Data
    Ghrib, Zeineb
    Jaziri, Rakia
    Romdhane, Rim
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [8] Time series forecasting and anomaly detection using deep learning
    Iqbal, Amjad
    Amin, Rashid
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 182
  • [9] Deep Reinforced Active Learning for Time Series Anomaly Detection
    Li, Haojie
    Xu, Hongzuo
    Peng, Wei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 115 - 128
  • [10] Anomaly Detection for Univariate Time Series with Statistics and Deep Learning
    Kao, Jian-Bin
    Jiang, Jehn-Ruey
    PROCEEDINGS OF THE 2019 IEEE EURASIA CONFERENCE ON IOT, COMMUNICATION AND ENGINEERING (ECICE), 2019, : 404 - 407