CoDDA: A Flexible Copula-based Distribution Driven Analysis Framework for Large-Scale Multivariate Data

被引:12
|
作者
Hazarika, Subhashis [1 ]
Dutta, Soumya [1 ]
Shen, Han-Wei [1 ]
Chen, Jen-Ping [2 ]
机构
[1] Ohio State Univ, GRAVITY Res Grp, Dept Comp Sci & Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
关键词
In situ processing; Distribution-based; Multivariate; Query-driven; Copula; NONPARAMETRIC MODELS; VISUALIZATION; UNCERTAINTY; VARIABILITY;
D O I
10.1109/TVCG.2018.2864801
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
CoDDA (Copula-based Distribution Driven Analysis) is a flexible framework for large-scale multivariate datasets. A common strategy to deal with large-scale scientific simulation data is to partition the simulation domain and create statistical data summaries. Instead of storing the high-resolution raw data from the simulation, storing the compact statistical data summaries results in reduced storage overhead and alleviated I/O bottleneck. Such summaries, often represented in the form of statistical probability distributions, can serve various post-hoc analysis and visualization tasks. However, for multivariate simulation data using standard multivariate distributions for creating data summaries is not feasible. They are either storage inefficient or are computationally expensive to be estimated in simulation time (in situ) for large number of variables. In this work, using copula functions, we propose a flexible multivariate distribution-based data modeling and analysis framework that offers significant data reduction and can be used in an in situ environment. The framework also facilitates in storing the associated spatial information along with the multivariate distributions in an efficient representation. Using the proposed multivariate data summaries, we perform various multivariate post-hoc analyses like query-driven visualization and sampling-based visualization. We evaluate our proposed method on multiple real-world multivariate scientific datasets. To demonstrate the efficacy of our framework in an in situ environment, we apply it on a large-scale flow simulation.
引用
收藏
页码:1214 / 1224
页数:11
相关论文
共 50 条
  • [1] Multivariate copula-based framework for stochastic analysis of landslide runout distance
    Ma, Guotao
    Rezania, Mohammad
    Nezhad, Mohaddeseh Mousavi
    Phoon, Kok-Kwang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [2] Copula-Based Anomaly Scoring and Localization for Large-Scale, High-Dimensional Continuous Data
    Horvath, Gabor
    Kovacs, Edith
    Molontay, Roland
    Novaczki, Szabolcs
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (03)
  • [3] A Copula-based Multivariate Degradation Analysis for Reliability Prediction
    Fang, Guanqi
    Pan, Rong
    Hong, Yili
    2018 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM (RAMS), 2018,
  • [4] Multivariate Extreme Wind Loads: Copula-Based Analysis
    Ji, Xiaowen
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (01)
  • [5] A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities
    Salvadori, G.
    Durante, F.
    De Michele, C.
    Bernardi, M.
    Petrella, L.
    WATER RESOURCES RESEARCH, 2016, 52 (05) : 3701 - 3721
  • [6] A Data-driven Mechanism for Large-scale Data Distribution
    Shi Peichang
    Li Yiying
    Ding Bo
    Jiang Longquan
    Liu Hui
    Zhang Jie
    2016 WORLD AUTOMATION CONGRESS (WAC), 2016,
  • [7] Copula-based multivariate analysis of hydro-meteorological drought
    Balaram Shaw
    Theoretical and Applied Climatology, 2023, 153 : 475 - 493
  • [8] Copula-based multivariate analysis of hydro-meteorological drought
    Shaw, Balaram
    Chithra, N. R.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2023, 153 (1-2) : 475 - 493
  • [9] A copula-based sampling method for data-driven prognostics
    Xi, Zhimin
    Jing, Rong
    Wang, Pingfeng
    Hu, Chao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2014, 132 : 72 - 82
  • [10] A Vine Copula-Based Hierarchical Framework for Multiscale Uncertainty Analysis
    Xu, Can
    Liu, Zhao
    Tao, Wei
    Zhu, Ping
    JOURNAL OF MECHANICAL DESIGN, 2020, 142 (03)