Non-termination and secure information flow

被引:0
|
作者
Smith, Geoffrey [1 ]
Alpizar, Rafael [1 ]
机构
[1] Florida Int Univ, Sch Comp & Informat Sci, Miami, FL 33199 USA
基金
美国国家科学基金会;
关键词
PROBABILISTIC NONINTERFERENCE;
D O I
10.1017/S0960129511000181
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In secure information flow analysis, the classic Denning restrictions allow a program's termination to be affected by the values of its H variables, resulting in potential information leaks. In an effort to quantify such leaks, in this paper we study a simple imperative language with random assignments. As a thought experiment, we propose a 'stripping' operation on programs, which eliminates all 'high computation', and prove the fundamental property that stripping cannot decrease the probability of any low outcome. To prove this property, we first introduce a new notion of fast probabilistic simulation on Markov chains and show that it implies a key reachability property. Viewing the stripping function as a binary relation, we then prove that stripping is a fast simulation. As an application, we prove that, under the Denning restrictions, well-typed probabilistic programs are guaranteed to satisfy an approximate probabilistic non-interference property, provided that their probability of non-termination is small.
引用
收藏
页码:1183 / 1205
页数:23
相关论文
共 50 条
  • [1] Termination and Non-termination Specification Inference
    Le, Ton Chanh
    Qin, Shengchao
    Chin, Wei-Ngan
    ACM SIGPLAN NOTICES, 2015, 50 (06) : 489 - 498
  • [2] Proving non-termination
    Gupta, Ashutosh K.
    Henzinger, Thomas A.
    Majumdar, Rupak
    Rybalchenko, Andrey
    Xu, Ru-Gang
    ACM SIGPLAN NOTICES, 2008, 43 (01) : 147 - 158
  • [3] Proving Non-Termination
    Gupta, Ashutosh K.
    Henzinger, Thomas A.
    Majumdar, Rupak
    Rybalchenko, Andrey
    Xu, Ru-Gang
    POPL'08: PROCEEDINGS OF THE 35TH ANNUAL ACM SIGPLAN-SIGACT SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES, 2008, : 147 - 158
  • [4] Non-termination in idempotent semirings
    Hoefner, Peter
    Struth, Georg
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 206 - 220
  • [5] Non-termination Proving at Scale
    Raad, Azalea
    Vanegue, Julien
    O'Hearn, Peter
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2024, 8 (OOPSLA):
  • [6] DynamiTe: Dynamic Termination and Non-termination Proofs
    Le, Ton Chanh
    Antonopoulos, Timos
    Fathololumi, Parisa
    Koskinen, Eric
    Nguyen, ThanhVu
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2020, 4
  • [7] Witness to non-termination of linear programs
    Li, Yi
    THEORETICAL COMPUTER SCIENCE, 2017, 681 : 75 - 100
  • [8] FuzzNT : Checking for Program Non-termination
    Karmarkar, Hrishikesh
    Medicherla, Raveendra Kumar
    Metta, Ravindra
    Yeduru, Prasanth
    2022 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2022), 2022, : 409 - 413
  • [9] Non-termination checking for imperative programs
    Velroyen, Helga
    Rummer, Philipp
    TESTS AND PROOFS, 2008, 4966 : 154 - +
  • [10] Formalizing non-termination of recursive programs
    Kahle, R
    Studer, T
    JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING, 2001, 49 (1-2): : 1 - 14