共 50 条
Laser-Induced Fast Assembly of Wettability-Finely-Tunable Superhydrophobic Surfaces for Lossless Droplet Transfer
被引:24
|作者:
Fan, Lisha
[1
,2
]
Yan, Qingyu
[1
,2
]
Qian, Qiangqiang
[1
,3
]
Zhang, Shuowen
[1
,2
]
Wu, Ling
[1
,2
]
Peng, Yang
[4
]
Jiang, Shibin
[4
]
Guo, Lianbo
[5
]
Yao, Jianhua
[1
,2
]
Wu, Huaping
[1
,3
]
机构:
[1] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ Technol, Inst Laser Adv Mfg, Collaborat Innovat Ctr High end Laser Mfg Equipmen, Hangzhou 310023, Peoples R China
[3] Zhejiang Univ Technol, Collaborat Innovat Ctr High end Laser Mfg Equipmen, Hangzhou 310023, Peoples R China
[4] Hangzhou Yinhu Laser Technol Co Ltd, Hangzhou 311400, Peoples R China
[5] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect WNLO, Wuhan 430074, Peoples R China
基金:
中国国家自然科学基金;
关键词:
ultrafast laser;
shape-memory polymer;
micropillar;
tunable adhesion;
lossless droplet transfer;
FEMTOSECOND LASER;
ADHESION;
DESIGN;
LOTUS;
D O I:
10.1021/acsami.2c09410
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Rose-petal-like superhydrophobic surfaces with strong water adhesion are promising for microdroplet manipulation and lossless droplet transfer. Assembly of self-grown micropillars on shape-memory polymer sheets with their surface adhesion finely tunable was enabled using a picosecond laser microprocessing system in a simple, fast, and large-scale manner. The processing speed of the wettability-finely-tunable superhydrophobic surfaces is up to 0.5 cm(2)/min, around 50-100 times faster than the conventional lithography methods. By adjusting the micropillar height, diameter, and bending angle, as well as superhydrophobic chemical treatment, the contact angle and adhesive force of water droplets on the micropillar-textured surfaces can be tuned from 117.1 degrees up to 165 degrees and 15.4 up to 200.6 mu N, respectively. Theoretical analysis suggests a well-defined wetting-state transition with respect to the micropillar size and provides a clear guideline for microstructure design for achieving a stabilized superhydrophobic region. Droplet handling devices, including liquid handling tweezers and gloves, were fabricated from the micropillar-textured surfaces, and lossless liquid transfer of various liquids among various surfaces was demonstrated using these devices. The superhydrophobic surfaces serve as a microreactor platform to perform and reveal the chemical reaction process under a space -constrained condition. The superhydrophobic surfaces with self-assembled micropillars promise great potential in the fields of lossless droplet transfer, biomedical detection, chemical engineering, and microfluidics.
引用
收藏
页码:36246 / 36257
页数:12
相关论文