Consensus-based sampling

被引:18
|
作者
Carrillo, J. A. [1 ]
Hoffmann, F. [2 ]
Stuart, A. M. [3 ]
Vaes, U. [4 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Rheinische Friedrich Wilhelms Univ, Hausdorff Ctr Math, D-53115 Bonn, Germany
[3] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Inria Paris, MATHERIALS Team, F-75012 Paris, France
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
optimization; sampling; stochastic interacting particle systems; MEAN-FIELD LIMIT; GLOBAL OPTIMIZATION; FLOCKING DYNAMICS; ENSEMBLE; PARTICLE; APPROXIMATIONS; CONVERGENCE; MODELS; FILTER;
D O I
10.1111/sapm.12470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a novel method for sampling and optimization tasks based on a stochastic interacting particle system. We explain how this method can be used for the following two goals: (i) generating approximate samples from a given target distribution and (ii) optimizing a given objective function. The approach is derivative-free and affine invariant, and is therefore well-suited for solving inverse problems defined by complex forward models: (i) allows generation of samples from the Bayesian posterior and (ii) allows determination of the maximum a posteriori estimator. We investigate the properties of the proposed family of methods in terms of various parameter choices, both analytically and by means of numerical simulations. The analysis and numerical simulation establish that the method has potential for general purpose optimization tasks over Euclidean space; contraction properties of the algorithm are established under suitable conditions, and computational experiments demonstrate wide basins of attraction for various specific problems. The analysis and experiments also demonstrate the potential for the sampling methodology in regimes in which the target distribution is unimodal and close to Gaussian; indeed we prove that the method recovers a Laplace approximation to the measure in certain parametric regimes and provide numerical evidence that this Laplace approximation attracts a large set of initial conditions in a number of examples.
引用
收藏
页码:1069 / 1140
页数:72
相关论文
共 50 条
  • [1] Polarized consensus-based dynamics for optimization and sampling
    Bungert, Leon
    Roith, Tim
    Wacker, Philipp
    MATHEMATICAL PROGRAMMING, 2024,
  • [2] Consensus-Based Thompson Sampling for Stochastic Multiarmed Bandits
    Hayashi, Naoki
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (01) : 293 - 306
  • [3] Consensus-Based Rendezvous
    Caicedo-Nunez, Carlos H.
    Zefran, Milos
    2008 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2008, : 255 - 260
  • [4] A consensus-based transparency checklist
    Aczel, Balazs
    Szaszi, Barnabas
    Sarafoglou, Alexandra
    Kekecs, Zoltan
    Kucharsky, Simon
    Benjamin, Daniel
    Chambers, Christopher D.
    Fisher, Agneta
    Gelman, Andrew
    Gernsbacher, Morton A.
    Ioannidis, John P.
    Johnson, Eric
    Jonas, Kai
    Kousta, Stavroula
    Lilienfeld, Scott O.
    Lindsay, D. Stephen
    Morey, Candice C.
    Munafo, Marcus
    Newell, Benjamin R.
    Pashler, Harold
    Shanks, David R.
    Simons, Daniel J.
    Wicherts, Jelte M.
    Albarracin, Dolores
    Anderson, Nicole D.
    Antonakis, John
    Arkes, Hal R.
    Back, Mitja D.
    Banks, George C.
    Beevers, Christopher
    Bennett, Andrew A.
    Bleidorn, Wiebke
    Boyer, Ty W.
    Cacciari, Cristina
    Carter, Alice S.
    Cesario, Joseph
    Clifton, Charles
    Conroy, Ronan M.
    Cortese, Mike
    Cosci, Fiammetta
    Cowan, Nelson
    Crawford, Jarret
    Crone, Eveline A.
    Curtin, John
    Engle, Randall
    Farrell, Simon
    Fearon, Pasco
    Fichman, Mark
    Frankenhuis, Willem
    Freund, Alexandra M.
    NATURE HUMAN BEHAVIOUR, 2020, 4 (01): : 4 - 6
  • [5] CONSTRAINED CONSENSUS-BASED OPTIMIZATION
    Borghi, Giacomo
    Herty, Michael
    Pareschi, Lorenzo
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (01) : 211 - 236
  • [6] On Consensus-Based Community Detection
    Fardad, Makan
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1577 - 1582
  • [7] Consensus-based Particle Filter
    Liu, Xiangyu
    Wang, Yan
    2012 INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND COMMUNICATION TECHNOLOGY (ICCECT 2012), 2012, : 577 - 580
  • [8] An Approach to Consensus-Based Time Synchronization Based on Dynamic Consensus
    Bathelt, Andreas
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3319 - 3324
  • [9] Consensus-Based Linear and Nonlinear Filtering
    Battistelli, G.
    Chisci, L.
    Mugnai, G.
    Farina, A.
    Graziano, A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (05) : 1410 - 1415
  • [10] Consensus-based optimisation with truncated noise
    Fornasier, Massimo
    Richtarik, Peter
    Riedl, Konstantin
    Sun, Lukang
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2025, 36 (02) : 292 - 315