Proof normalization modulo

被引:42
|
作者
Dowek, G [1 ]
Werner, B [1 ]
机构
[1] Ecole Polytech, LIX, INRIA, F-91128 Palaiseau, France
关键词
D O I
10.2178/jsl/1067620188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a generic notion of cut that applies to many first-order theories. We prove a generic cut elimination theorem showing that the cut elimination property holds for all theories having a so-called pre-model. As a corollary, we retrieve cut elimination for several axiomatic theories, including Church's simple type theory.
引用
收藏
页码:1289 / 1316
页数:28
相关论文
共 50 条
  • [1] Languages modulo normalization
    Ohsaki, Hitoshi
    Seki, Hiroyuki
    FRONTIERS OF COMBINING SYSTEMS, PROCEEDINGS, 2007, 4720 : 221 - +
  • [2] Inductive proof search modulo
    Fabrice Nahon
    Claude Kirchner
    Hélène Kirchner
    Paul Brauner
    Annals of Mathematics and Artificial Intelligence, 2009, 55 : 123 - 154
  • [3] Inductive proof search modulo
    Nahon, Fabrice
    Kirchner, Claude
    Kirchner, Helene
    Brauner, Paul
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2009, 55 (1-2) : 123 - 154
  • [4] Normalization proof for Peano Arithmetic
    Siders, Annika
    ARCHIVE FOR MATHEMATICAL LOGIC, 2015, 54 (7-8) : 921 - 940
  • [5] ON PROOF NORMALIZATION IN LINEAR LOGIC
    GALMICHE, D
    PERRIER, G
    THEORETICAL COMPUTER SCIENCE, 1994, 135 (01) : 67 - 110
  • [6] PROOF NORMALIZATION FOR RESOLUTION AND PARAMODULATION
    BACHMAIR, L
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 355 : 15 - 28
  • [7] PROOF NORMALIZATION WITH NONSTANDARD OBJECTS
    GOTO, S
    THEORETICAL COMPUTER SCIENCE, 1991, 85 (02) : 333 - 351
  • [8] Normalization proof for Peano Arithmetic
    Annika Siders
    Archive for Mathematical Logic, 2015, 54 : 921 - 940
  • [9] Data width requirements in SISO decoding with modulo normalization
    Wu, YF
    Woerner, BD
    Blankenship, TK
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (11) : 1861 - 1868
  • [10] Proof of a conjecture on a congruence modulo 243 for overpartitions
    Xiaoqian Huang
    Olivia X. M. Yao
    Periodica Mathematica Hungarica, 2019, 79 : 227 - 235