Kernel-Based Persian Viseme Clustering

被引:0
|
作者
Dehshibi, Mohammad Mahdi [1 ]
Alavi, Meysam [2 ]
Shanbehzadeh, Jamshid [3 ]
机构
[1] IAU, Dept Comp Engn, Sci & Res Branch, Tehran, Iran
[2] Univ Sci & Culture, Dept Comp Engn, Hamadan, Iran
[3] Kharazmi Univ, Dept Comp Engn, Tehran, Iran
关键词
Audio/Visual processing; Computer assisted pronunciation training; Persian Viseme clustering; Phoneme manifold;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Viseme (Visual Phoneme) clustering and analysis in every language is among the most important preliminaries for conducting various multimedia researches as talking head, lip reading, lip synchronization and computer assisted pronunciation training applications. With respect to the fact that clustering and analyzing visemes are language dependent processes, we concentrated our research on Persian language, which indeed has suffered from lack of such study. In this paper, we used a hierarchical approach for clustering visemes in Persian language based on principal component analysis of a polynomial kernel matrix considering coarticulation effect. Having obtained feature vector of each phoneme, we applied unweighted pair group method with arithmetic mean to each projected vise me on constructed manifold. Then furthest neighbor of the weight value as a result of reconstruction is set as the criterion for comparing viseme dissimilarity. In order to indicate the robustness of the proposed algorithm, a set of experiments was conducted on Persian databases in which two syllables were examined. Comparing the results of the clustering algorithm with that of the perceptual test given by an expert proves a reasonable evaluation of the proposed algorithm.
引用
收藏
页码:129 / 133
页数:5
相关论文
共 50 条
  • [1] Kernel-based clustering
    Piciarelli, C.
    Micheloni, C.
    Foresti, G. L.
    ELECTRONICS LETTERS, 2013, 49 (02) : 113 - U7
  • [2] Online kernel-based clustering
    Alam, Abrar
    Malhotra, Akshay
    Schizas, Ioannis D.
    PATTERN RECOGNITION, 2025, 158
  • [3] Performance of kernel-based fuzzy clustering
    Graves, D.
    Pedrycz, W.
    ELECTRONICS LETTERS, 2007, 43 (25) : 1445 - 1446
  • [4] Kernel-based clustering via Isolation Distributional Kernel
    Zhu, Ye
    Ting, Kai Ming
    INFORMATION SYSTEMS, 2023, 117
  • [5] Performance Assessment of Kernel-Based Clustering
    Tushir, Meena
    Srivastava, Smriti
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS, 2014, 246 : 139 - 145
  • [6] A kernel-based subtractive clustering method
    Kim, DW
    Lee, K
    Lee, D
    Lee, KH
    PATTERN RECOGNITION LETTERS, 2005, 26 (07) : 879 - 891
  • [7] A kernel-based fuzzy clustering algorithm
    Wang, Jiun-Hau
    Lee, Wan-Jui
    Lee, Shie-Jue
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 1, PROCEEDINGS, 2006, : 550 - +
  • [8] Kernel Parameter Optimization in Stretched Kernel-Based Fuzzy Clustering
    Lu, Chunhong
    Zhu, Zhaomin
    Gu, Xiaofeng
    PARTIALLY SUPERVISED LEARNING, PSL 2013, 2013, 8193 : 49 - 57
  • [9] Mercer kernel-based clustering in feature space
    Girolami, M
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (03): : 780 - 784
  • [10] A Kernel-Based Core Growing Clustering Method
    Hsieh, T. W.
    Taur, J. S.
    Tao, C. W.
    Kung, S. Y.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (04) : 441 - 458