Preparation of matrix-grafted graphene/poly(poly(ethylene glycol) methyl ether methacrylate) nanocomposite gel polymer electrolytes by reversible addition-fragmentation chain transfer polymerization for lithium ion batteries

被引:11
|
作者
Hamrahjoo, Mahtab [1 ,2 ]
Hadad, Saeed [1 ,2 ]
Dehghani, Elham [1 ,2 ]
Salami-Kalajahi, Mehdi [1 ,2 ]
Roghani-Mamaqani, Hossein [1 ,2 ]
机构
[1] Sahand Univ Technol, Fac Polymer Engn, POB 51335-1996, Tabriz, Iran
[2] Sahand Univ Technol, Inst Polymer Mat, POB 51335-1996, Tabriz, Iran
基金
美国国家科学基金会;
关键词
Lithium ion battery; Graphene; Nanocomposite gel polymer electrolytes; Reversible addition-fragmentation chain transfer polymerization; POLY(ETHYLENE OXIDE); GRAPHENE; LIQUID; CONDUCTIVITY; TRANSPORT; PERFORMANCES; SEPARATOR; COMPOSITE; ENERGY;
D O I
10.1016/j.eurpolymj.2022.111419
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A structural design and appropriate morphology of polymer-functionalized graphene oxide are occupied to optimize nanocomposite polymer electrolytes. The nanocomposite gel polymer electrolytes (GPEs) based on poly (poly (ethylene glycol) methyl ether methacrylate and RAFT agent-functionalized graphene oxide [P(PEGMA/ GO-S-(thiobenzoyl)thioglycolic acid (STTA))] have been successfully prepared by in-situ polymerization method in different ratio of GO-STTA and crosslinking by poly(ethylene glycol) diallyl (PEGDA). The P(PEGMA/ GO-STTA) GPE with 0.5 wt% of GO-STTA exhibited a high ionic conductivity of 5.5 mS cm(-1) at room tem-perature, a superior lithium transfer number (t+) value of 0.61, and electrochemical window up 4.7 V. The GPE based P(PEGMA/GO-STTA0.5%) indicated 92% coulombic efficiency, the charge capacity value of 191.7 mAh g(-1) potential for lithium ion battery with high safety and long cycle life. , and capacity retention was about 92% after 100 cycles at 0.1C. P(PEGMA/GO-STTA) GPEs showed great potential for lithium ion battery with high safety and long cycle life.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Preparation of nanocomposite polymer electrolytes by incorporating poly [poly(ethylene glycol) methyl ether methacrylate]-grafted poly(amidoamine) dendrimer for high performance lithium ion batteries
    Dehghani, Elham
    Salami-Kalajahi, Mehdi
    Moghaddam, Amir Rezvani
    Roghani-Mamaqani, Hossein
    EUROPEAN POLYMER JOURNAL, 2023, 186
  • [2] Reversible Addition-Fragmentation Chain Transfer Polymerization of Styrene in Poly (Ethylene Glycol)
    Zhu, Lemin
    Ye, Lei
    Yan, Fuzhen
    Liu, Huan
    Zhang, Zijing
    Ran, Rong
    JOURNAL OF POLYMER MATERIALS, 2014, 31 (03): : 333 - 346
  • [3] Poly(poly[ethylene glycol] methyl ether methacrylate)/graphene oxide nanocomposite gel polymer electrolytes prepared by controlled and conventional radical polymerizations for lithium ion batteries
    Hamrahjoo, Mahtab
    Hadad, Saeed
    Dehghani, Elham
    Salami-Kalajahi, Mehdi
    Roghani-Mamaqani, Hossein
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (07) : 9114 - 9127
  • [4] Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization
    Saeid Rahimi-Razin
    Vahid Haddadi-Asl
    Mehdi Salami-Kalajahi
    Farid Behboodi-Sadabad
    Hossein Roghani-Mamaqani
    Journal of the Iranian Chemical Society, 2012, 9 : 877 - 887
  • [5] Properties of matrix-grafted multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposites synthesized by in situ reversible addition-fragmentation chain transfer polymerization
    Rahimi-Razin, Saeid
    Haddadi-Asl, Vahid
    Salami-Kalajahi, Mehdi
    Behboodi-Sadabad, Farid
    Roghani-Mamaqani, Hossein
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2012, 9 (06) : 877 - 887
  • [6] Li-ion batteries with poly[poly(ethylene glycol) methyl ether methacrylate]-grafted oxidized starch solid and gel polymer electrolytes
    Hajian, Zahra
    Safavi-Mirmahalleh, Seyedeh-Arefeh
    Moghaddam, Amir Rezvani
    Roghani-Mamaqani, Hossein
    Salami-Kalajahi, Mehdi
    JOURNAL OF POWER SOURCES, 2025, 629
  • [7] Reversible Addition-fragmentation Chain Transfer Polymerization Grafted from Silicon Surface to Prepare Poly(methyl methacrylate) Brushes
    Yuan Kun
    Lue Ling-Ling
    Li Zhi-Feng
    Shi Xiao-Ning
    CHINESE JOURNAL OF CHEMISTRY, 2008, 26 (10) : 1929 - 1934
  • [8] Preparation of Poly(methyl methacrylate) Functionalized Carbon Fiber via Reversible Addition-Fragmentation Chain Transfer Polymerization
    Xiong, Lei
    Li, Xiaofeng
    Liang, Hongbo
    Huang, Shengmei
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (07) : 4032 - 4034
  • [9] Synthesis and Characterization of Poly(methyl methacrylate-block-ethylene glycol-block-methyl methacrylate) Block Copolymers by Reversible Addition-Fragmentation Chain Transfer Polymerization
    Ozturk, Temel
    Goktas, Melahat
    Hazer, Baki
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2011, 48 (01): : 65 - 72
  • [10] Synthesis of Poly(Methyl Methacrylate)-Based Polyrotaxane via Reversible Addition-Fragmentation Chain Transfer Polymerization
    Wang, Yu-Cheng
    Maeda, Rina
    Kali, Gergely
    Yokoyama, Hideaki
    Wenz, Gerhard
    Ito, Kohzo
    ACS MACRO LETTERS, 2020, 9 (12) : 1853 - 1857