Electronic band structure, Fermi surface, and elastic properties of polymorphs of the 5.2 K iron-free superconductor SrPt2As2 from first-principles calculations

被引:39
|
作者
Shein, I. R. [1 ]
Ivanovskii, A. L. [1 ]
机构
[1] Russian Acad Sci, Inst Solid State Chem, Ural Branch, 91 Pervomaiskaya Sreet, Ekaterinburg 620990, Russia
基金
俄罗斯基础研究基金会;
关键词
HIGH-TEMPERATURE SUPERCONDUCTORS; LIFEAS BASIC PHASES; TRANSITION; ARSENIDES; SRFE2AS2; CRYSTAL; LAFEASO; THCR2SI2-TYPE; SINGLE; MODULI;
D O I
10.1103/PhysRevB.83.104501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By means of first-principles calculations, we studied in detail the structural, elastic, and electronic properties of the tetragonal CaBe2Ge2-type 5.2 K superconductor SrPt2As2 in comparison with two hypothetical SrPt2As2 polymorphs with ThCr2Si2-type structures, which differ in the atomic configurations of the [Pt2As2] (or [As2Pt2]) blocks. We found that CaBe2Ge2-type SrPt2As2 is a unique system with near-Fermi bands of a complicated character and an "intermediate"-type Fermi surface, which consists of electronic pockets having a cylinder-like [two-dimensional (2D)] topology (typical of 122 FeAs phases) together with 3D-like electronic and hole pockets, which are characteristic of ThCr2Si2-like iron-free low-T-c superconductors. Our analysis revealed that, as distinct from ThCr2Si2-like 122 phases, other features of CaBe2Ge2-like SrPt2As2 are as follows: (1) There are essential differences in the contributions from [Pt2As2] and [As2Pt2] blocks to the near-Fermi region; conduction is anisotropic and occurs mainly in the [Pt2As2] blocks. (2) A 3D system of strong covalent Pt-As bonds is formed (inside and between [Pt2As2] and [As2Pt2] blocks), which is responsible for enhanced stability of this polymorph. (3) There is essential charge anisotropy between adjacent [Pt2As2] and [As2Pt2] blocks. We also predict that CaBe2Ge2-like SrPt2As2 is a mechanically stable and relatively soft material with high compressibility, which will behave in a ductile manner. In contrast, the ThCr2Si2-type SrPt2As2 polymorphs, which contain only [Pt2As2] or [As2Pt2] blocks, are less stable, have Fermi surfaces of a multisheet three-dimensional type like the ThCr2Si2-like iron-free 122 phases, and therefore will be ductile materials with high elastic anisotropy. Based on our data for the three simplest SrPt2As2 polymorphs we assume that there may exist a family of higher-order polytypes, which can be formed as a result of various stackings of the two main types of building blocks ([Pt2As2] and [As2Pt2]) in various combinations along the z axis. This may provide an interesting platform for further theoretical and experimental search for other superconducting materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Electronic band structure and Fermi surface of new 3.7 K superconductor LiCu2P2 from first-principles calculations
    Shein, I. R.
    Ivanovskii, A. L.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2011, 471 (7-8): : 226 - 228
  • [2] Electronic bands, Fermi surface, and elastic properties of new 4.2 K superconductor SrPtAs with a honeycomb structure from first principles calculations
    Shein, I. R.
    Ivanovskii, A. L.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2011, 471 (19-20): : 594 - 596
  • [3] Stability, structural, elastic and electronic properties of RuN polymorphs from first-principles calculations
    Bannikov, V. V.
    Shein, I. R.
    Ivanovskii, A. L.
    SOLID STATE COMMUNICATIONS, 2010, 150 (19-20) : 953 - 956
  • [4] Elastic and electronic properties of ScMn2 from first-principles calculations
    Wu, Meng-Meng
    Tang, Bi-Yu
    Peng, Li-Ming
    Ding, Wen-Jing
    PHYSICA B-CONDENSED MATTER, 2010, 405 (23) : 4812 - 4817
  • [5] Elastic Properties and Electronic Structure of WS2 under Pressure from First-principles Calculations
    Li, Li
    Zeng, Zhao-Yi
    Liang, Ting
    Tang, Mei
    Cheng, Yan
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (04): : 295 - 301
  • [6] RuAl2: Structure, electronic and elastic properties from first-principles
    Pan, Yong
    MATERIALS RESEARCH BULLETIN, 2017, 93 : 56 - 62
  • [7] Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations
    Shein, I. R.
    Ivanovskii, A. L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 583 : 100 - 105
  • [8] First-principles calculations of the elastic, electronic and optical properties of AgGaS2
    Hou Hai-Jun
    Zhu Shi-Fu
    Zhao Bei-Jun
    Yu You
    Xie Lin-Hua
    PHYSICA SCRIPTA, 2010, 82 (05)
  • [10] First-principles calculations of the CaF2(111), (110), and (100) surface electronic and band structure
    Eglitis, R. I.
    Shi, H.
    Borstel, G.
    SURFACE REVIEW AND LETTERS, 2006, 13 (2-3) : 149 - 154