Fluorescence lifetime imaging: An emerging technique in fluorescence microscopy

被引:10
|
作者
Morgan, CG
Mitchell, AC
机构
关键词
D O I
10.1007/BF02263674
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence microscopy is an important tool for biological research, in part because of the extremely high detection sensitivity that can be achieved, but also because fluorescent molecules can be used as probes on account of their environmental responsiveness, for example to measure intracellular pH or metal ion concentration. Unfortunately, the environmental sensitivity can sometimes be a source of problems because of enhancement or 'quenching', which can make it very difficult to relate emission intensity to the amount of fluorophore present. The measured intensity is essentially proportional to the product of the amount of fluorophore present in the sample and the local quantum yield of the fluorophore (the quantum yield can be thought of as the probability that an excited molecule decays by fluorescence emission rather than by other non-radiative processes). This is a particular difficulty in an environment such as a cell or tissue slice in which quantum yield and fluorophore concentration can both vary within the sample. Ideally we would wish to be able to measure the quantum yield of fluorescence as well as the fluorescence intensity, as this would allow environmental effects to be compensated for. Unfortunately, this is not at all easy, and indirect means to achieve the same goal are more appropriate. A recently introduced technique, fluorescence lifetime imaging (Morgan et al. 1992, Wang et al. 1992), offers one such means to improve quantification of fluorescence microscopy. In addition, as will be explained, the technique offers the prospect of significantly improving detection sensitivity in appropriate circumstances.
引用
收藏
页码:261 / 263
页数:3
相关论文
共 50 条
  • [1] Fluorescence lifetime imaging microscopy
    Chang, Ching-Wei
    Sud, Dhruv
    Mycek, Mary-Ann
    DIGITAL MICROSCOPY, 3RD EDITION, 2007, 81 : 495 - +
  • [2] Fluorescence lifetime imaging microscopy
    Cole, MJ
    Siegel, J
    Jones, R
    Webb, SED
    Gu, Y
    French, PMW
    Lever, MJ
    Neil, MAA
    Juskaitis, R
    Wilson, T
    BIOMEDICAL TOPICAL MEETINGS, TECHNICAL DIGEST, 2000, 38 : 310 - 312
  • [3] Fluorescence lifetime imaging microscopy
    不详
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [4] Fluorescence lifetime imaging microscopy
    Torrado, Belen
    Pannunzio, Bruno
    Malacrida, Leonel
    Digman, Michelle A.
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [5] Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy
    Breusegem, Sophia Y.
    Levi, Moshe
    Barry, Nicholas P.
    NEPHRON EXPERIMENTAL NEPHROLOGY, 2006, 103 (02): : E41 - E49
  • [6] Fluorescence lifetime imaging techniques for microscopy
    French, T
    So, PTC
    Dong, CY
    Berland, KM
    Gratton, E
    METHODS IN CELL BIOLOGY, VOLUME 56, 1998, 56 : 277 - 304
  • [7] System for fluorescence lifetime imaging microscopy
    van Geest, LK
    Boddeke, FR
    van Dijk, PW
    Kamp, AF
    van der Oord, CJR
    Stoop, KWJ
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING VI, PROCEEDINGS OF, 1999, 3605 : 55 - 64
  • [8] Fluorescence lifetime imaging microscopy (FLIM)
    van Munster, EB
    Gadella, TWJ
    MICROSCOPY TECHNIQUES, 2005, 95 : 143 - 175
  • [9] Coherent White Light Confocal Fluorescence Imaging and Fluorescence Lifetime Imaging Microscopy
    Soria, Silvia
    Quercioli, Franco
    Mercatelli, Raffaella
    Bianco, Federica
    Cacciari, Ilaria
    Pelli, Stefano
    Righini, Giancarlo
    PHOTONIC MATERIALS, DEVICES, AND APPLICATIONS III, 2009, 7366
  • [10] Fluorescence lifetime imaging microscopy: Two-dimensional distribution measurement of fluorescence lifetime
    Fujiwara, Masanobu
    Cieslik, William
    MEASURING BIOLOGICAL RESPONSES WITH AUTOMATED MICROSCOPY, 2006, 414 : 633 - 642