Effect of atmospheres on the open-circuit photovoltage of nanoporous TiO2/poly(3-hexylthiophene) heterojunction solar cell

被引:43
|
作者
Watanabe, A [1 ]
Kasuya, A
机构
[1] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Interdisciplinary Res Ctr, Sendai, Miyagi 9808578, Japan
关键词
nanostructure; organic semiconductor; solar cells; titanium dioxide;
D O I
10.1016/j.tsf.2004.12.056
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photovoltaic properties of the nanoporous titanium dioxide TiO2/Poly(3-hexylthiophene) heterojunction solar cell are studied by photovoltammetry under periodic photoirradiation, which is effective in examining the photo- and dark-current potential profiles simultaneously in the same experiment. The open-circuit voltage (V-oc) of the TiO2/poly(3-hexylthiophene) cell significantly depends on the atmosphere in the measurements. Accompanying the increase of the dark current, the photovoltammogram in vacuo shows the lower V-oc than that in air. The stepwise increase of the dark current after pulse irradiation is observed in the transient current-time profiles for the TiO2/poly(3-hexylthiophene) cell in vacuo. The difference spectra of the TiO2/poly(3-hexylthiophene) cell during photoirradiation in vacuo show the increase of a broad absorption band attributed to trapped charge carriers in the near-IR region, which is the origin of the dark current increment. The photovoltaic properties of the TiO2/Poly(3-hexylthiophene) heterojunction are seriously affected by the trapped charge carriers. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 366
页数:9
相关论文
共 50 条
  • [1] Poly(3-hexylthiophene):TiO2 nanocomposites for solar cell applications
    Kwong, CY
    Choy, WCH
    Djurisic, AB
    Chui, PC
    Cheng, KW
    Chan, WK
    NANOTECHNOLOGY, 2004, 15 (09) : 1156 - 1161
  • [2] Improving poly(3-hexylthiophene)-TiO2 heterojunction solar cells by connecting polypyrrole to the TiO2 nanorods
    Li, Feilong
    Ni, Xiuyuan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 118 : 109 - 115
  • [3] High Open-Circuit Voltage of Organic Bulk Heterojunction Solar Cells Base on Poly(3-hexylthiophene): Fullerene Derivatives
    Kim, Chul-Hyun
    Song, Myungkwan
    Jin, Sung-Ho
    Lee, Jae Wook
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2011, 538 : 216 - 222
  • [4] Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)-TiO2 heterojunction solar cell
    Ma, Xun
    Ni, Xiuyuan
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (04)
  • [5] Using upconversion nanoparticles to improve photovoltaic properties of poly(3-hexylthiophene)–TiO2 heterojunction solar cell
    Xun Ma
    Xiuyuan Ni
    Journal of Nanoparticle Research, 2013, 15
  • [6] Hybrid bulk heterojunction solar cells from a blend of poly(3-hexylthiophene) and TiO2 nanotubes
    Wang, Z. J.
    Qu, S. C.
    Zeng, X. B.
    Liu, J. P.
    Zhang, C. S.
    Tan, F. R.
    Jin, L.
    Wang, Z. G.
    APPLIED SURFACE SCIENCE, 2008, 255 (05) : 1916 - 1920
  • [7] Effect of ZnO processing on the photovoltage of ZnO/poly(3-hexylthiophene) solar cells
    Olson, Dana C.
    Lee, Yun-Ju
    White, Matthew S.
    Kopidakis, Nikos
    Shaheen, Sean E.
    Ginley, David S.
    Voigt, James A.
    Hsu, Julia W. P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (26): : 9544 - 9547
  • [8] Large open-circuit voltage polymer solar cells by poly(3-hexylthiophene) with multi-adducts fullerenes
    HEEGER Alan J.
    Science China(Chemistry), 2012, (05) : 742 - 747
  • [9] The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites
    Xu, Shoubin
    Gu, Lingxiao
    Wu, Kaihua
    Yang, Haigang
    Song, Yuanqing
    Jiang, Long
    Dan, Yi
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 96 (01) : 286 - 291
  • [10] Large open-circuit voltage polymer solar cells by poly(3-hexylthiophene) with multi-adducts fullerenes
    Xiong Gong
    TianZhi Yu
    Yong Cao
    Alan J. Heeger
    Science China Chemistry, 2012, 55 : 743 - 748