REM sleep;
Diffusion tensor imaging;
Machine learning;
NETWORK;
WATER;
D O I:
10.1007/s11325-021-02434-9
中图分类号:
R74 [神经病学与精神病学];
学科分类号:
摘要:
Purpose We evaluated the feasibility of machine learning analysis using diffusion tensor imaging (DTI) parameters to identify patients with idiopathic rapid eye movement (REM) sleep behavior disorder (RBD). We hypothesized that patients with idiopathic RBD could be identified via machine learning analysis based on DTI. Methods We enrolled 20 patients with newly diagnosed idiopathic RBD at a tertiary hospital. We also included 20 healthy subjects as a control group. All of the subjects underwent DTI. We obtained the conventional DTI parameters and structural connectomic profiles from the DTI. We investigated the differences in conventional DTI measures and structural connectomic profiles between patients with idiopathic RBD and healthy controls. We then used machine learning analysis using a support vector machine (SVM) algorithm to identify patients with idiopathic RBD using conventional DTI and structural connectomic profiles. Results Several regions showed significant differences in conventional DTI measures and structural connectomic profiles between patients with idiopathic RBD and healthy controls. The SVM classifier based on conventional DTI measures revealed an accuracy of 87.5% and an area under the curve of 0.900 to identify patients with idiopathic RBD. Another SVM classifier based on structural connectomic profiles yielded an accuracy of 75.0% and an area under the curve of 0.833. Conclusion Our findings demonstrate the feasibility of machine learning analysis based on DTI to identify patients with idiopathic RBD. The conventional DTI parameters might be more important than the structural connectomic profiles in identifying patients with idiopathic RBD.
机构:
CNR, Inst Mol Bioimaging & Physiol, I-20054 Segrate, Italy
Ist Sci San Raffaele, Sleep Disorders Ctr, Div Neurosci, I-20127 Milan, ItalyCNR, Inst Mol Bioimaging & Physiol, I-20054 Segrate, Italy
Salsone, Maria
Quattrone, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Magna Graecia Univ Catanzaro, Inst Neurol, I-88100 Catanzaro, ItalyCNR, Inst Mol Bioimaging & Physiol, I-20054 Segrate, Italy
Quattrone, Andrea
Vescio, Basilio
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Council CNR, Inst Mol Bioimaging & Physiol IBFM, Neuroimaging Res Unit, I-88100 Catanzaro, Italy
Co Magna Graecia Univ, Biotecnomed SCaRL, G Bldg,Lev 1, I-88100 Catanzaro, ItalyCNR, Inst Mol Bioimaging & Physiol, I-20054 Segrate, Italy
Vescio, Basilio
Ferini-Strambi, Luigi
论文数: 0引用数: 0
h-index: 0
机构:
Ist Sci San Raffaele, Sleep Disorders Ctr, Div Neurosci, I-20127 Milan, Italy
Univ Vita Salute San Raffaele, Sleep Disorders Ctr, I-20132 Milan, ItalyCNR, Inst Mol Bioimaging & Physiol, I-20054 Segrate, Italy
Ferini-Strambi, Luigi
Quattrone, Aldo
论文数: 0引用数: 0
h-index: 0
机构:
Natl Res Council CNR, Inst Mol Bioimaging & Physiol IBFM, Neuroimaging Res Unit, I-88100 Catanzaro, Italy
Magna Graecia Univ Catanzaro, Neurosci Res Ctr, I-88100 Catanzaro, ItalyCNR, Inst Mol Bioimaging & Physiol, I-20054 Segrate, Italy
机构:
Korea Adv Inst Sci & Technol, Bio & Brain Engn, Seoul, South KoreaCatholic Univ Korea, Daejeon St Marys Hosp, Coll Med, Neurol, Seoul, South Korea
Kim, S.
论文数: 引用数:
h-index:
机构:
Kim, S. H.
Kim, W.
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Neurol, Seoul, South KoreaCatholic Univ Korea, Daejeon St Marys Hosp, Coll Med, Neurol, Seoul, South Korea
Kim, W.
Ryu, D. -W.
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Korea, Yeouido St Marys Hosp, Coll Med, Neurol, Seoul, South KoreaCatholic Univ Korea, Daejeon St Marys Hosp, Coll Med, Neurol, Seoul, South Korea
Ryu, D. -W.
论文数: 引用数:
h-index:
机构:
Choi, Y. H.
论文数: 引用数:
h-index:
机构:
Hwang, Y.
Jung, J.
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Bio & Brain Engn, Seoul, South KoreaCatholic Univ Korea, Daejeon St Marys Hosp, Coll Med, Neurol, Seoul, South Korea