Effects of different cooling rates on the microstructure, crystallographic features, and hydrogen induced cracking of API X80 pipeline steel

被引:51
|
作者
Ramirez, Mario F. G. [1 ]
Hernandez, Jose W. C. [2 ,3 ,4 ]
Ladino, Duberney H. [5 ]
Masoumi, Mohammad [6 ]
Goldenstein, Helio [2 ,3 ,4 ]
机构
[1] Univ Santiago Cali, Fac Ingn, Campus Pampalinda,Calle 5 62, Cali, Colombia
[2] Univ Sao Paulo, Dept Engn Metalurg & Mat, Av Prof Mello Moraes, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, Escola Politecn, Av Prof Mello Moraes, Sao Paulo, SP, Brazil
[4] EPUSP PMT, Av Prof Mello Moraes, Sao Paulo, SP, Brazil
[5] Fac Ingn Mecan, Campus Aguas Claras, Villavicencio, Colombia
[6] Univ Fed ABC, Ctr Engn Modelagem & Ciencias Sociais Aplicadas, BR-09210580 Santo Andre, SP, Brazil
关键词
HSLA; Electron backscattered diffraction; Strain distribution; Grain orientation; HIC; SULFIDE STRESS CRACKING; HEAT-AFFECTED ZONES; MECHANICAL-PROPERTIES; ACICULAR FERRITE; BEHAVIOR; TEXTURE; IMPACT; PROPAGATION; ENVIRONMENT; TOUGHNESS;
D O I
10.1016/j.jmrt.2021.07.060
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hydrogen-Induced Cracking (HIC) is a primary failure mechanism of pipeline-welded joints in the absence of external loading in the oil and gas exploration industries. Three different cooling rates after austenitization were used to simulate in the laboratory different regions of the heat-affected zone (HAZ) formed when welding an API X80 pipeline steel specially designed to enhance the HIC resistance. The samples were characterized with regard to microstructure and crystallography as well as HIC resistance. The HIC resistance test used NACE TM0284-2011 methodology. The microstructure and its homogeneity varied as a function of cooling rates. Samples containing inclusions and segregation zone from the segregation bands of specimens showed reduced HIC resistance, while specimens containing only acicular ferrite and granular bainite coupled with the absence of segregation zone showed significant improvement in HIC resistance. The best HIC resistance results came from samples presenting fine acicular ferrite consisting of fine interlocking plates, with divergent crystallographic orientations, preventing the formation of localized strain distribution inside the grain and at grain boundaries. It was also found that a large proportion of medium-angle boundaries prevent microcrack initiation and the trans granular mode of crack propagation. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1848 / 1861
页数:14
相关论文
共 50 条
  • [1] Effects of cooling processes on microstructure and susceptibility of hydrogen-induced cracking of X80 pipeline steel
    Li, Longfei
    Song, Bo
    Cheng, Jin
    Yang, Yuhou
    Liu, Zhen
    MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2018, 69 (05): : 590 - 600
  • [2] Hydrogen induced cracking of X80 pipeline steel
    Dong, Chao-fang
    Xiao, Kui
    Liu, Zhi-yong
    Yang, Wen-jing
    Li, Xiao-gang
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2010, 17 (05) : 579 - 586
  • [3] Hydrogen induced cracking of X80 pipeline steel
    Chao-fang Dong
    InternationalJournalofMineralsMetallurgyandMaterials, 2010, 17 (05) : 579 - 586
  • [4] Hydrogen induced cracking of X80 pipeline steel
    Chao-fang Dong
    Kui Xiao
    Zhi-yong Liu
    Wen-jing Yang
    Xiao-gang Li
    International Journal of Minerals, Metallurgy, and Materials, 2010, 17 : 579 - 586
  • [5] Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel
    Huang, F.
    Li, X. G.
    Liu, J.
    Qu, Y. M.
    Jia, J.
    Du, C. W.
    JOURNAL OF MATERIALS SCIENCE, 2011, 46 (03) : 715 - 722
  • [6] Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel
    F. Huang
    X. G. Li
    J. Liu
    Y. M. Qu
    J. Jia
    C. W. Du
    Journal of Materials Science, 2011, 46 : 715 - 722
  • [7] Effect of Ce content on the hydrogen induced cracking of X80 pipeline steel
    Cheng, Wensen
    Song, Bo
    Mao, Jinghong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (40) : 15303 - 15316
  • [8] Effects of vanadium precipitates on hydrogen trapping efficiency and hydrogen induced cracking resistance in X80 pipeline steel
    Li, Longfei
    Song, Bo
    Cheng, Jin
    Yang, Zhanbing
    Cai, Zeyun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (36) : 17353 - 17363
  • [9] Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content
    Sha, Qingyun
    Li, Dahang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 585 : 214 - 221
  • [10] Research on Hydrogen-Induced Induced Cracking Sensitivity of X80 Pipeline Steel under Different Heat Treatments
    Wu, Chen
    Yan, Chunyan
    Zhang, Shenglin
    Zhou, Lingchuan
    Shen, Mengdie
    Tian, Zhanpeng
    MATERIALS, 2024, 17 (09)