First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems

被引:544
作者
Behler, Joerg [1 ]
机构
[1] Univ Gottingen, Inst Phys Chem, Theoret Chem, Tammannstr 6, D-37077 Gottingen, Germany
关键词
computational chemistry; density functional calculations; molecular dynamics; neural networks; potential energy surfaces; DENSITY-FUNCTIONAL THEORY; PROTON-TRANSFER MECHANISMS; AQUEOUS NAOH SOLUTIONS; ENERGY SURFACES; DYNAMICS SIMULATIONS; FORCE-FIELD; WATER CLUSTERS; PHASE; MODELS; STATE;
D O I
10.1002/anie.201703114
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modern simulation techniques have reached a level of maturity which allows a wide range of problems in chemistry and materials science to be addressed. Unfortunately, the application of first principles methods with predictive power is still limited to rather small systems, and despite the rapid evolution of computer hardware no fundamental change in this situation can be expected. Consequently, the development of more efficient but equally reliable atomistic potentials to reach an atomic level understanding of complex systems has received considerable attention in recent years. A promising new development has been the introduction of machine learning (ML) methods to describe the atomic interactions. Once trained with electronic structure data, ML potentials can accelerate computer simulations by several orders of magnitude, while preserving quantum mechanical accuracy. This Review considers the methodology of an important class of ML potentials that employs artificial neural networks.
引用
收藏
页码:12828 / 12840
页数:13
相关论文
共 137 条
[1]   MOLECULAR MECHANICS - THE MM3 FORCE-FIELD FOR HYDROCARBONS .1. [J].
ALLINGER, NL ;
YUH, YH ;
LII, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (23) :8551-8566
[2]  
[Anonymous], 1993, ANGEW CHEM, V105, P510
[3]  
[Anonymous], 1927, ANN PHYS-BERLIN, DOI [DOI 10.1002/ANDP.19273892002, 10.1002/andp. 19273892002. eprint, DOI 10.1002/ANDP.19273892002.EPRINT]
[4]   An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2 [J].
Artrith, Nongnuch ;
Urban, Alexander .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 :135-150
[5]   Grand canonical molecular dynamics simulations of Cu-Au nanoalloys in thermal equilibrium using reactive ANN potentials [J].
Artrith, Nongnuch ;
Kolpak, Alexie M. .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 110 :20-28
[6]   Understanding the Composition and Activity of Electrocatalytic Nanoalloys in Aqueous Solvents: A Combination of DFT and Accurate Neural Network Potentials [J].
Artrith, Nongnuch ;
Kolpak, Alexie M. .
NANO LETTERS, 2014, 14 (05) :2670-2676
[7]   Neural network potentials for metals and oxides - First applications to copper clusters at zinc oxide [J].
Artrith, Nongnuch ;
Hiller, Bjoern ;
Behler, Joerg .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (06) :1191-1203
[8]   High-dimensional neural network potentials for metal surfaces: A prototype study for copper [J].
Artrith, Nongnuch ;
Behler, Joerg .
PHYSICAL REVIEW B, 2012, 85 (04)
[9]   High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide [J].
Artrith, Nongnuch ;
Morawietz, Tobias ;
Behler, Joerg .
PHYSICAL REVIEW B, 2011, 83 (15)
[10]   Development of a "First Principles" Water Potential with Flexible Monomers: Dimer Potential Energy Surface, VRT Spectrum, and Second Virial Coefficient [J].
Babin, Volodymyr ;
Leforestier, Claude ;
Paesani, Francesco .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (12) :5395-5403