LMS algorithms for tracking slow Markov chains with applications to hidden Markov estimation and adaptive multiuser detection

被引:11
|
作者
Yin, GG [1 ]
Krishnamurthy, V
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
adaptive filtering; admission/access control; direct-sequence code-division multiple-access (DS/CDMA) adaptive; multiuser detection; hidden Markov model (HMM); jump Markov parameter; mean square error bound; weak convergence;
D O I
10.1109/TIT.2005.850075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper analyzes the tracking properties of the least mean squares (LMS) algorithm when the underlying parameter evolves according to a finite-state Markov chain with infrequent jumps. First, using perturbed Liapunov function methods, mean-square error estimates are obtained for the tracking error. Then using recent results on two-time-scale Markov chains, mean ordinary differential equation and diffusion approximation results are obtained. It is shown that a sequence of the centered tracking errors converges to an ordinary differential equation. Moreover, a suitably scaled sequence of the tracking errors converges weakly to a diffusion process. It is also shown that iterate averaging of the tracking algorithm results in optimal asymptotic convergence rate in an appropriate sense. Two application examples, analysis of the performance of an adaptive multiuser detection algorithm in a direct-sequence code-division multiple-access (DS/CDMA) system, and tracking analysis of the state of a hidden Markov model (HMM) with infrequent jumps, are presented.
引用
收藏
页码:2475 / 2490
页数:16
相关论文
共 50 条
  • [1] Convergence controls for MCMC algorithms, with applications to hidden Markov chains
    Robert, CP
    Rydén, T
    Titterington, DM
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (04) : 327 - 355
  • [2] An algorithm for blind adaptive multiuser detection based on hidden Markov models
    Liu, F
    Zhang, TY
    Zhang, RN
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 885 - 889
  • [3] Parameter estimation for hidden Markov chains
    Archer, GEB
    Titterington, DM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) : 365 - 390
  • [4] Multiuser Detection Using Hidden Markov Model
    Chen, Fangjiong
    Kwong, Sam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (01) : 107 - 115
  • [5] ADAPTIVE ESTIMATION OF HIDDEN NEARLY COMPLETELY DECOMPOSABLE MARKOV-CHAINS WITH APPLICATIONS IN BLIND EQUALIZATION
    KRISHNAMURTHY, V
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1994, 8 (03) : 237 - 260
  • [6] Estimation of Hidden Markov Chains by a Neural Network
    Ito, Yoshifusa
    Izumi, Hiroyuki
    Srinivasan, Cidambi
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT I, 2014, 8834 : 602 - 609
  • [7] Estimation of hidden markov chains by a neural network
    Ito, Yoshifusa (ito@aichi-med-u.ac.jp), 1600, Springer Verlag (8834):
  • [8] Adaptive estimation for bifurcating Markov chains
    Penda, S. Valere Bitseki
    Hoffmann, Marc
    Olivier, Adelaide
    BERNOULLI, 2017, 23 (4B) : 3598 - 3637
  • [9] Applications of hidden Markov chains in image analysis
    Norwegian Computing Cent, Oslo, Norway
    Pattern Recognit, 4 (703-713):
  • [10] Applications of hidden Markov chains in image analysis
    Aas, K
    Eikvil, L
    Huseby, RB
    PATTERN RECOGNITION, 1999, 32 (04) : 703 - 713