Computation of graded ideals with given extremal Betti numbers in a polynomial ring

被引:5
|
作者
Amata, Luca [1 ]
Crupi, Marilena [1 ]
机构
[1] Univ Messina, Dept Math & Comp Sci, Phys & Geol Sci, Viale Ferdinando Stagno dAlcontres 31, I-98166 Messina, Italy
关键词
Graded ideals; Monomial ideals; Minimal graded resolution; Extremal Betti numbers; Algorithms;
D O I
10.1016/j.jsc.2018.04.019
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider a polynomial ring in a finite number of variables over a field of characteristic 0. We implement in CoCoA some algorithms in order to easy compute graded ideals of this ring with given extremal Betti numbers (positions as well as values). More precisely, we develop a package for determining the conditions under which, given two positive integers n, r, 1 <= r <= n - 1, there exists a graded ideal of a polynomial ring in n variables with r extremal Betti numbers in the given position. An algorithm to check whether an r-tuple of positive integers represents the admissible values of the r extremal Betti numbers is also described. An example in order to show how the package works is also presented. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:120 / 132
页数:13
相关论文
共 50 条
  • [1] Extremal Betti numbers of graded ideals
    Marilena Crupi
    Rosanna Utano
    Results in Mathematics, 2003, 43 (3-4) : 235 - 244
  • [2] The graded Betti numbers of truncation of ideals in polynomial rings
    Ahmed, Chwas
    Froberg, Ralf
    Namiq, Mohammed Rafiq
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 57 (04) : 1303 - 1312
  • [3] The graded Betti numbers of truncation of ideals in polynomial rings
    Chwas Ahmed
    Ralf Fröberg
    Mohammed Rafiq Namiq
    Journal of Algebraic Combinatorics, 2023, 57 : 1303 - 1312
  • [4] Extremal Betti numbers of lexsegment ideals
    Crupi, M
    Utano, R
    GEOMETRIC AND COMBINATORIAL ASPECTS OF COMMUNTATIVE ALGEBRA, 2001, 217 : 159 - 164
  • [5] Extremal Betti numbers of edge ideals
    Hibi, Takayuki
    Kimura, Kyouko
    Matsuda, Kazunori
    ARCHIV DER MATHEMATIK, 2019, 113 (02) : 149 - 155
  • [6] Extremal Betti numbers of edge ideals
    Takayuki Hibi
    Kyouko Kimura
    Kazunori Matsuda
    Archiv der Mathematik, 2019, 113 : 149 - 155
  • [7] Extremal Betti numbers of graded modules
    Crupi, Marilena
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (06) : 2277 - 2288
  • [8] GRADED BETTI NUMBERS OF POWERS OF IDEALS
    Bagheri, Amir
    Lamei, Kamran
    JOURNAL OF COMMUTATIVE ALGEBRA, 2020, 12 (02) : 153 - 169
  • [9] Extremal Betti numbers and applications to monomial ideals
    Bayer, D
    Charalambous, H
    Popescu, S
    JOURNAL OF ALGEBRA, 1999, 221 (02) : 497 - 512
  • [10] Upper bounds for the Betti numbers of graded ideals of a given length in the exterior algebra
    Crupi, M
    Utano, R
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) : 4607 - 4631