Optogenetic control of kinetochore function

被引:0
|
作者
Zhang, Huaiying [1 ]
Aonbangkhen, Chanat [2 ]
Tarasovetc, Ekaterina V. [1 ]
Ballister, Edward R. [1 ]
Chenoweth, David M. [2 ]
Lampson, Michael A. [1 ]
机构
[1] Univ Penn, Sch Arts & Sci, Dept Biol, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Arts & Sci, Dept Chem, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
SPINDLE ASSEMBLY CHECKPOINT; CENP-E; CHROMOSOME CONGRESSION; ORGANELLE TRANSPORT; MAMMALIAN-CELLS; PROTEIN; MECHANISMS; MITOSIS; METAPHASE; BIOLOGY;
D O I
10.1038/NCHEMBIO.2456
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Kinetochores act as hubs for multiple activities during cell division, including microtubule interactions and spindle checkpoint signaling. Each kinetochore can act autonomously, and activities change rapidly as proteins are recruited to, or removed from, kinetochores. Understanding this dynamic system requires tools that can manipulate kinetochores on biologically relevant temporal and spatial scales. Optogenetic approaches have the potential to provide temporal and spatial control with molecular specificity. Here we report new chemical inducers of protein dimerization that allow us to both recruit proteins to and release them from kinetochores using light. We use these dimerizers to manipulate checkpoint signaling and molecular motor activity. Our findings demonstrate specialized properties of the CENP-E (kinesin-7) motor for directional chromosome transport to the spindle equator and for maintenance of metaphase alignment. This work establishes a foundation for optogenetic control of kinetochore function, which is broadly applicable to experimental probing of other dynamic cellular processes.
引用
收藏
页码:1096 / +
页数:8
相关论文
共 50 条
  • [1] Optogenetic control of kinetochore function
    Huaiying Zhang
    Chanat Aonbangkhen
    Ekaterina V Tarasovetc
    Edward R Ballister
    David M Chenoweth
    Michael A Lampson
    Nature Chemical Biology, 2017, 13 : 1096 - 1101
  • [2] Optogenetic tools for controlling kinetochore function in live cells
    Zhang, H.
    Aonbangkhen, C.
    Gokden, A.
    Chenoweth, D. M.
    Lampson, M. A.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [3] Optogenetic control of β cell function
    Jimenez-Gonzalez, Maria
    Stanley, Sarah
    NATURE BIOMEDICAL ENGINEERING, 2024, 8 (07) : 801 - 803
  • [4] Optogenetic Control of Cardiac Function
    Arrenberg, Aristides B.
    Stainier, Didier Y. R.
    Baier, Herwig
    Huisken, Jan
    SCIENCE, 2010, 330 (6006) : 971 - 974
  • [5] Optogenetic Control of Synaptic Composition and Function
    Sinnen, Brooke L.
    Bowen, Aaron B.
    Forte, Jeffrey S.
    Hiester, Brian G.
    Crosby, Kevin C.
    Gibson, Emily S.
    Dell'Acqua, Mark L.
    Kennedy, Matthew J.
    NEURON, 2017, 93 (03) : 646 - +
  • [6] Optogenetic Control of Phosphatase and Kinase Function
    Ryan, Amy
    Zhou, Wenyuan
    Shoger, Karsen E.
    Courtney, Taylor M.
    Gottschalk, Rachel A.
    Deiters, Alexander
    FASEB JOURNAL, 2022, 36
  • [7] Optogenetic control of mitochondrial aggregation and function
    Zhang, Luhao
    Liu, Xuechun
    Zhu, Min
    Yao, Yuanfa
    Liu, Zhichao
    Zhang, Xianming
    Deng, Xin
    Wang, Yi
    Duan, Liting
    Guo, Xiaogang
    Fu, Junfen
    Xu, Yingke
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 12
  • [8] Optogenetic control of YAP cellular localisation and function
    Toh, Pearlyn J. Y.
    Lai, Jason K. H.
    Hermann, Anke
    Destaing, Olivier
    Sheetz, Michael P.
    Sudol, Marius
    Saunders, Timothy E.
    EMBO REPORTS, 2022, 23 (09)
  • [9] Reversible optogenetic control of protein function and localization
    Wu, Daniel Z.
    Lackner, Rachel M.
    Aonbangkhen, Chanat
    Lampson, Michael A.
    Chenoweth, David M.
    OPTOCHEMICAL BIOLOGY, 2019, 624 : 25 - 45
  • [10] Optogenetic control of contractile function in skeletal muscle
    Tobias Bruegmann
    Tobias van Bremen
    Christoph C. Vogt
    Thorsten Send
    Bernd K. Fleischmann
    Philipp Sasse
    Nature Communications, 6