Effects of Preparation Temperature on Pyrolytic Carbon Coated LiFePO4/Vapor-grown Carbon Fiber (PCLFP/VGCF) Composite Cathode Material

被引:2
|
作者
Deng Fei [1 ]
Zeng Xie-Rong [2 ,3 ]
Zou Ji-Zhao [2 ,3 ]
Li Xiao-Hua [2 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Mat Sci & Engn, Xian 710072, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Key Lab Special Funct Mat, Shenzhen 518060, Peoples R China
关键词
lithium iron phosphate; pyrolytic carbon; vapor-grown carbon fiber; microwave chemical vapor deposition; lithium ion batteries; ELECTROCHEMICAL PROPERTIES; PHOSPHO-OLIVINES; DOPED LIFEPO4/C; PERFORMANCE; DEPOSITION; NANOTUBES; VGCFS;
D O I
10.3724/SP.J.1077.2011.01141
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Pyrolytic carbon coated LiFePO4/vapor-grown carbon fiber (PCLFP/VGCF) composite cathode materials were prepared by microwave chemical vapor deposition (MCVD) process. Effects of preparation temperature on microstructures and electrochemical properties of the composites were investigated. The results show that with preparation temperature increasing from 500 degrees C to 600 degrees C, the discharge capacities of the composite electrodes are improved because of the gradual formation of conductive network of VGCF. However, it decreases when the preparation temperature is up to 700, which may be attributed. to the exaggerated grain growth of LiFePO4 and the reduction of VGCF network. In addition, the composite cathode materials prepared at 600 degrees C show better electrochemical properties, with the discharge capacity as high as 163, 159, 153 and 143mAh/g at rate of 0.2C, 0.5C, 1C, 3C, respectively (25 degrees C).
引用
收藏
页码:1141 / 1146
页数:6
相关论文
共 30 条
  • [1] Growth of carbon micro-trees - Carbon deposition under extreme conditions causes tree-like structures to spring up.
    Ajayan, PM
    Nugent, JM
    Siegel, RW
    Wei, B
    Kohler-Redlich, P
    [J]. NATURE, 2000, 404 (6775) : 243 - 243
  • [2] Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4
    Belharouak, I
    Johnson, C
    Amine, K
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (10) : 983 - 988
  • [3] Chen CC, 2004, 206 M EL SOC HON HI, P413
  • [4] Electronically conductive phospho-olivines as lithium storage electrodes
    Chung, SY
    Bloking, JT
    Chiang, YM
    [J]. NATURE MATERIALS, 2002, 1 (02) : 123 - 128
  • [5] Size effects on carbon-free LiFePO4 powders
    Delacourt, C.
    Poizot, P.
    Levasseur, S.
    Masquelier, C.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) : A352 - A355
  • [6] Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
    Delmas, C.
    Maccario, M.
    Croguennec, L.
    Le Cras, F.
    Weill, F.
    [J]. NATURE MATERIALS, 2008, 7 (08) : 665 - 671
  • [7] Synthesis of LiFePO4 in situ vapor-grown carbon fiber (VGCF) composite cathode material via microwave pyrolysis chemical vapor deposition
    Deng Fei
    Zeng XieRong
    Zou JiZhao
    Huang JianFeng
    Sheng HongChao
    Xiong XinBo
    Qian HaiXia
    Li XiaoHua
    [J]. CHINESE SCIENCE BULLETIN, 2011, 56 (17): : 1832 - 1835
  • [8] Deng F, 2011, J NEW MAT ELECTR SYS, V14, P27
  • [9] Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications
    Endo, M
    Kim, YA
    Hayashi, T
    Nishimura, K
    Matusita, T
    Miyashita, K
    Dresselhaus, MS
    [J]. CARBON, 2001, 39 (09) : 1287 - 1297
  • [10] Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery
    Endo, M
    Nishimura, Y
    Takahashi, T
    Takeuchi, K
    Dresselhaus, MS
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1996, 57 (6-8) : 725 - 728