Good quality point sets and error estimates for moving least square approximations

被引:41
|
作者
Zuppa, C [1 ]
机构
[1] Univ Nacl San Luis, Dept Matemat, RA-5700 San Luis, Argentina
关键词
meshless methods; moving least square interpolation; error estimates;
D O I
10.1016/S0168-9274(03)00091-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to study the relation of the condition number of the star of nodes in normal equations for error estimates of Moving Least Square approximations in Sobolev spaces. The condition numbers are closely related to the good quality of the set of nodes and the approximating power of the method. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:575 / 585
页数:11
相关论文
共 42 条
  • [1] Error estimates for moving least square approximations
    Zuppa, C
    BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2003, 34 (02): : 231 - 249
  • [2] Error estimates for moving least square approximations
    Carlos Zuppa
    Bulletin of the Brazilian Mathematical Society, 2003, 34 : 231 - 249
  • [3] Error estimates for moving least square approximations
    Armentano, MG
    Durán, RG
    APPLIED NUMERICAL MATHEMATICS, 2001, 37 (03) : 397 - 416
  • [4] Error estimates in Sobolev spaces for moving least square approximations
    Armentano, MG
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) : 38 - 51
  • [5] Adaptive Moving Least Square Approximations and Its Application
    Yuan Zhanbin
    Nie Yufeng
    Jie, Ouyang
    ISCM II AND EPMESC XII, PTS 1 AND 2, 2010, 1233 : 976 - 981
  • [6] A meshless algorithm with moving least square approximations for elliptic Signorini problems
    王延冲
    李小林
    ChinesePhysicsB, 2014, 23 (09) : 39 - 46
  • [7] A meshless algorithm with moving least square approximations for elliptic Signorini problems
    Wang Yan-Chong
    Li Xiao-Lin
    CHINESE PHYSICS B, 2014, 23 (09)
  • [8] Error estimates for the interpolating moving least-squares method
    Wang, J. F.
    Sun, F. X.
    Cheng, Y. M.
    Huang, A. X.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 321 - 342
  • [9] A meshless Galerkin method with moving least square approximations for infinite elastic solids
    李小林
    李淑玲
    Chinese Physics B, 2013, 22 (08) : 249 - 256
  • [10] A meshless Galerkin method with moving least square approximations for infinite elastic solids
    Li Xiao-Lin
    Li Shu-Ling
    CHINESE PHYSICS B, 2013, 22 (08)