共 50 条
RETRACTED: Slug down-regulation by RNA interference inhibits invasion growth in human esophageal squamous cell carcinoma (Retracted Article)
被引:20
|作者:
Tang, Peng
[2
]
Yu, Zhentao
[2
]
Zhang, Kejun
[1
]
Wang, Yu
[1
]
Ma, Zhongliang
[3
]
Zhang, Shaoyan
[3
]
Chen, Dong
[1
]
Zhou, Yanbing
[1
]
机构:
[1] Qingdao Univ, Coll Med, Affiliated Hosp, Dept Surg, Qingdao 266003, Shandong, Peoples R China
[2] Tianjin Med Univ, Canc Inst & Hosp, Key Lab Canc Prevent & Therapy, Dept Esophegeal Oncol, Tianjin 300060, Peoples R China
[3] Qingdao Univ, Coll Med, Affiliated Hosp, Dept Lab, Qingdao 266003, Shandong, Peoples R China
关键词:
E-CADHERIN EXPRESSION;
MESENCHYMAL TRANSITIONS;
SNAIL;
PROGRESSION;
METASTASIS;
PROGNOSIS;
SURVIVAL;
D O I:
10.1186/1471-230X-11-60
中图分类号:
R57 [消化系及腹部疾病];
学科分类号:
摘要:
Background: Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive carcinomas of the gastrointestinal tract. We assessed the relevance of Slug in measuring the invasive potential of ESCC cells in vitro and in vivo in immunodeficient mice. Methods: We utilized RNA interference to knockdown Slug gene expression, and effects on survival and invasive carcinoma were evaluated using a Boyden chamber transwell assay in vitro. We evaluated the effect of Slug siRNA-transfection and Slug cDNA-transfection on E-cadherin and Bcl-2 expression in ESCC cells. A pseudometastatic model of ESCC in immunodeficient mice was used to assess the effects of Slug siRNA transfection on tumor metastasis development. Results: The EC109 cell line was transfected with Slug-siRNA to knockdown Slug expression. The TE13 cell line was transfected with Slug-cDNA to increase Slug expression. EC109 and TE13 cell lines were tested for the expression of apoptosis-related genes bcl-2 and metastasis-related gene E-cadherin identified previously as Slug targets. Bcl-2 expression was increased and E-cadherin was decreased in Slug siRNA-transfected EC109 cells. Bcl-2 expression was increased and E-cadherin was decreased in Slug cDNA-transfected TE13 cells. Invasion of Slug siRNA-transfected EC109 cells was reduced and apoptosis was increased whereas invasion was greater in Slug cDNA-transfected cells. Animals injected with Slug siRNA-transfected EC109 cells exhihited fewer seeded nodes and demonstrated more apoptosis. Conclusions: Slug down-regulation promotes cell apoptosis and decreases invasion capability in vitro and in vivo. Slug inhibition may represent a novel strategy for treatment of metastatic ESCC.
引用
收藏
页数:10
相关论文