EVACUATED TUBE SOLAR COLLECTORS INTEGRATED WITH PHASE CHANGE MATERIALS AND SILICONE OIL

被引:0
|
作者
Papadimitratos, Alexios [1 ]
Sobhansarbandi, Sarvenaz [2 ]
Pozdin, Vladimir [3 ]
Zakhidov, Anvar [4 ]
Hassanipour, Fatemeh [5 ]
机构
[1] Univ Texas Dallas, Nanotech Inst, Richardson, TX 75080 USA
[2] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[3] Solarno Inc, Coppell, TX 75019 USA
[4] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
[5] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
关键词
Evacuated solar tube; Solar water heater; Phase change material; Silicone oil; LATENT-HEAT STORAGE; THERMAL-ENERGY STORAGE; WATER-HEATER; SYSTEM; PERFORMANCE;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a novel method of integrating Phase Change Materials (PCMs) and Silicone oil within the Evacuated solar Tube Collectors (ETCs) for application in Solar Water Heaters (SWHs). In this method, heat pipe is immersed inside the phase change material, where heat is effectively accumulated and stored for an extended period of time due to thermal insulation of evacuated tubes. The proposed solar collector utilizes two distinct phase change materials (dual-PCM), namely Tritriacontane paraffin and Erythritol, with melting temperature 72 degrees C and 118 degrees C respectively. The integration of Silicone oil for uniform melting of the PCMs, utilizes the convective heat transfer inside the evacuated tubes, as this liquid polymerized material is well known for its temperature -stability and an excellent heat transfer medium. The operation of solar water heater with the proposed solar collector is investigated during both normal and stagnation (on -demand) operation. The feasibility of this technology is tested via small scale and large scale commercial solar water heaters. Beyond the improved functionality for solar water heater systems, the results from this study show show efficiency improvement of 26% for the normal operation and 66% for the stagnation mode compared with standard solar water heaters that lack phase change materials and silicone oil. The benefit of this method includes improved functionality by delayed release of heat, thus providing hot water during the hours of high demand or when solar intensity is insufficient such in a cloudy day and during night time.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Evacuated tube solar collectors integrated with phase change materials
    Papadimitratos, Alexios
    Sobhansarbandi, Sarvenaz
    Pozdin, Vladimir
    Zakhidov, Anvar
    Hassanipour, Fatemeh
    SOLAR ENERGY, 2016, 129 : 10 - 19
  • [2] On the integration of phase change materials with evacuated tube solar thermal collectors
    Aramesh, M.
    Shabani, B.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 132
  • [3] An experimental investigation of the phase change process effects on the system performance for the evacuated tube solar collectors integrated with PCMs
    Essa, Mohamed A.
    Mostafa, Nabil H.
    Ibrahim, Mostafa M.
    ENERGY CONVERSION AND MANAGEMENT, 2018, 177 : 1 - 10
  • [4] On the thermal performance of evacuated tube solar collector integrated with phase change material
    Olfian, Hassan
    Ajarostaghi, Seyed Soheil Mousavi
    Ebrahimnataj, Mohammadreza
    Farhadi, Mousa
    Arici, Muslum
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [5] Thermal augmentation in evacuated tube solar collectors using reflectors, nano fluids, phase change materials and tilt angle: A review
    Aggarwal, Sorabh
    Kumar, Sushil
    Kumar, Raj
    Thakur, Robin
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 4931 - 4935
  • [6] Experimental analysis of an evacuated tube solar collector using different phase change materials
    Prakash, Ved
    Srivastava, Anmesh Kumar
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2024, 49 (04):
  • [7] Thermal modeling of evacuated tube solar air collectors
    Paradis, Pierre-Luc
    Rousse, Daniel R.
    Halle, Stephane
    Lamarche, Louis
    Quesada, Guillermo
    SOLAR ENERGY, 2015, 115 : 708 - 721
  • [8] Exergy analysis of evacuated tube solar collectors: a review
    Saxena, Gaurav
    Gaur, Manoj Kumar
    INTERNATIONAL JOURNAL OF EXERGY, 2018, 25 (01) : 54 - 74
  • [9] Progress and latest developments of evacuated tube solar collectors
    Sabiha, M. A.
    Saidur, R.
    Mekhilef, Saad
    Mahian, Omid
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 51 : 1038 - 1054
  • [10] An experimental evaluation of direct flow evacuated tube solar collector integrated with phase change material
    Abokersh, Mohamed Hany
    El-Morsi, Mohamed
    Sharaf, Osama
    Abdelrahman, Wael
    ENERGY, 2017, 139 : 1111 - 1125