smartR: An r package for spatial modelling of fisheries and scenario simulation of management strategies

被引:11
|
作者
D'Andrea, Lorenzo [1 ]
Parisi, Antonio [2 ]
Fiorentino, Fabio [3 ]
Garofalo, Germana [3 ]
Gristina, Michele [4 ]
Cataudella, Stefano [1 ]
Russo, Tommaso [1 ]
机构
[1] Univ Roma Tor Vergata, LESA, Rome, Italy
[2] Univ Roma Tor Vergata, DEF, Rome, Italy
[3] CNR, IRBIM, Mazara Del Vallo, TP, Italy
[4] CNR, Ist Impatti Antrop & Sostenibilita Ambiente Marin, Palermo, PA, Italy
来源
METHODS IN ECOLOGY AND EVOLUTION | 2020年 / 11卷 / 07期
关键词
bio-economic evaluation; decision support; fisheries management; scenario simulation; spatial modelling; management strategy evaluation; species distribution; MEDITERRANEAN FISHERIES; FISH;
D O I
10.1111/2041-210X.13394
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Overfishing or exploitation patterns with high juvenile mortalities often negatively impact demersal fish stocks. Meanwhile, the increased availability and diffusion of georeferenced information is propelling a revolution of marine spatial planning. A spatial-explicit approach to the management of fishing effort should protect the Essential Fish Habitats and minimize the impact of trawlers on areas where juveniles of commercial species concentrate. The smartR package is a data-driven model that implements the Spatially explicit bio-economic Model for Assessing and managing demeRsal Trawl fisheries to edit and format the raw data; construct and maintain coherent datasets; to numerically and visually inspect the generated metadata; to simulate management scenarios and forecast the possible effects in terms of resources status and economic performances of the fleets. Explicit inclusion of the spatial dimension is essential to improve the understanding of the fishery system, and to enhance the ability of management plans to improve stocks statuses.
引用
收藏
页码:859 / 868
页数:10
相关论文
共 42 条
  • [1] Evaluating conservation and fisheries management strategies by linking spatial prioritization software and ecosystem and fisheries modelling tools
    Metcalfe, Kristian
    Vaz, Sandrine
    Engelhard, Georg H.
    Villanueva, Maria Ching
    Smith, Robert J.
    Mackinson, Steven
    JOURNAL OF APPLIED ECOLOGY, 2015, 52 (03) : 665 - 674
  • [2] AMPLE: An R package for capacity building on fisheries harvest strategies
    Scott, Finlay
    Yao, Nan
    Scott, Robert Dryden
    PLOS ONE, 2022, 17 (06):
  • [3] An application of simulation modelling and optimization in fisheries management
    Truong T.H.
    Azadivar F.
    Stokesbury K.D.E.
    International Journal of Modelling and Simulation, 2010, 30 (03): : 361 - 370
  • [4] Spatial R-Vine Copula for Streamflow Scenario Simulation
    Pereira, Guilherme
    Veiga, Alvaro
    Erhardt, Tobias
    Czado, Claudia
    2016 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), 2016,
  • [5] VMSbase: An R-Package for VMS and Logbook Data Management and Analysis in Fisheries Ecology
    Russo, Tommaso
    D'Andrea, Lorenzo
    Parisi, Antonio
    Cataudella, Stefano
    PLOS ONE, 2014, 9 (06):
  • [6] Evaluating deepwater fisheries management strategies using a mixed-fisheries and spatially explicit modelling framework
    Marchal, Paul
    Vermard, Youen
    ICES JOURNAL OF MARINE SCIENCE, 2013, 70 (04) : 768 - 781
  • [7] mobsim: An R package for the simulation and measurement of biodiversity across spatial scales
    May, Felix
    Gerstner, Katharina
    McGlinn, Daniel J.
    Xiao, Xiao
    Chase, Jonathan M.
    METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (06): : 1401 - 1408
  • [8] inlabru: an R package for Bayesian spatial modelling from ecological survey data
    Bachl, Fabian E.
    Lindgren, Finn
    Borchers, David L.
    Illian, Janine B.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (06): : 760 - 766
  • [9] Flexible modelling of spatial variation in agricultural field trials with the R package INLA
    Maria Lie Selle
    Ingelin Steinsland
    John M. Hickey
    Gregor Gorjanc
    Theoretical and Applied Genetics, 2019, 132 : 3277 - 3293
  • [10] CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data
    Lasinio, Giovanna Jona
    Santoro, Mario
    Mastrantonio, Gianluca
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) : 1315 - 1345