On Different Stopping Criteria for Multi-objective Harmony Search Algorithms

被引:2
|
作者
Abu Doush, Iyad [1 ]
Bataineh, Mohammad Qasem [2 ]
El-Abd, Mohammed [3 ]
机构
[1] Amer Univ Kuwait, Comp Sci & Informat Syst Dept, Salmiya, Kuwait
[2] Yarmouk Univ, Dept Comp Sci, Irbid, Jordan
[3] Amer Univ Kuwait, Elect & Comp Engn Dept, Salmiya, Kuwait
关键词
Multi-objective optimization; Continuous optimization; Harmony search; Hybrid framework; Stopping criteria; OPTIMIZATION;
D O I
10.1145/3325773.3325774
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In evolutionary multi-objective optimization, an evolutionary algorithm is used to solve an optimization problem having multiple, and usually conflicting objective functions. Previous proposed approaches to solve multi-objective optimization problems include NSGA-II, MOEA/D, MOPSO, and MOHS/D algorithms. In our previous work, we enhanced the performance of MOHS/D using a hybrid framework with population diversity monitoring. The population diversity was measured every a predetermined number of iterations to either invoke local search or a diversity enhancement mechanism. In this work, two different stopping criteria are compared using four the HS hybrid frameworks we previously proposed. The stopping criteria compared are the moving average and MGBM. The experimental study is carried using the ZDT, DTLZ and CEC2009 benchmarks. The experimental results show that the moving average stopping criteria gives better results for the majority of the datasets.
引用
收藏
页码:30 / 34
页数:5
相关论文
共 50 条
  • [1] The effect of different stopping criteria on multi-objective optimization algorithms
    Iyad Abu Doush
    Mohammed El-Abd
    Abdelaziz I. Hammouri
    Mohammad Qasem Bataineh
    Neural Computing and Applications, 2023, 35 : 1125 - 1155
  • [2] The effect of different stopping criteria on multi-objective optimization algorithms
    Abu Doush, Iyad
    El-Abd, Mohammed
    Hammouri, Abdelaziz I.
    Bataineh, Mohammad Qasem
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (02): : 1125 - 1155
  • [3] A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms
    Wagner, Tobias
    Trautmann, Heike
    Marti, Luis
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 16 - +
  • [4] Stopping criteria in evolutionary algorithms for multi-objective performance optimization of integrated inductors
    Fernandez, Francisco V.
    Esteban-Muller, J.
    Roca, Elisenda
    Castro-Lopez, Rafael
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [5] An Approach to Stopping Criteria for Multi-objective Optimization Evolutionary Algorithms: The MGBM Criterion
    Marti, Luis
    Garcia, Jesus
    Berlanga, Antonio
    Molina, Jose M.
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1263 - 1270
  • [6] A Multi-Objective Binary Harmony Search Algorithm
    Wang, Ling
    Mao, Yunfei
    Niu, Qun
    Fei, Minrui
    ADVANCES IN SWARM INTELLIGENCE, PT II, 2011, 6729 : 74 - 81
  • [7] A Niching Multi-objective Harmony Search Algorithm for Multimodal Multi-objective Problems
    Qu, B. Y.
    Li, G. S.
    Guo, Q. Q.
    Yan, L.
    Chai, X. Z.
    Guo, Z. Q.
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1267 - 1274
  • [8] Multi-objective calibration of Tank model using multiple genetic algorithms and stopping criteria
    Gutierrez, Juan Carlos Ticona
    Caballero, Cassia Brocca
    Vasconcellos, Sofia Melo
    Vanelli, Franciele Maria
    Bravo, Juan Martin
    RBRH-REVISTA BRASILEIRA DE RECURSOS HIDRICOS, 2022, 27
  • [9] A stopping criterion for multi-objective optimization evolutionary algorithms
    Marti, Luis
    Garcia, Jesus
    Berlanga, Antonio
    Molina, Jose M.
    INFORMATION SCIENCES, 2016, 367 : 700 - 718
  • [10] The Effect of Different Local Search Algorithms on the Performance of Multi-Objective Optimizers
    Pilat, Martin
    Neruda, Roman
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 2172 - 2179