Molecular signatures of resource competition: Clonal interference favors ecological diversification and can lead to incipient speciation

被引:14
|
作者
Amicone, Massimo [1 ]
Gordo, Isabel [1 ]
机构
[1] Inst Gulbenkian Ciencia IGC, Evolutionary Biol, Oeiras, Portugal
关键词
Clonal interference; competitive exclusion; diversification; eco-evolutionary dynamics; resource competition; speciation; EVOLUTIONARILY STABLE COMMUNITIES; BENEFICIAL MUTATIONS; ADAPTATION; CHLAMYDOMONAS; ENVIRONMENTS; MAINTENANCE; EPISTASIS; FRAMEWORK; INTERPLAY; DYNAMICS;
D O I
10.1111/evo.14315
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Microbial ecosystems harbor an astonishing diversity that can persist for long times. To understand how such diversity is structured and maintained, ecological and evolutionary processes need to be integrated at similar timescales. Here, we study a model of resource competition that allows for evolution via de novo mutation, and focus on rapidly adapting asexual populations with large mutational inputs, as typical of many bacteria species. We characterize the adaptation and diversification of an initially maladapted population and show how the eco-evolutionary dynamics are shaped by the interaction between simultaneously emerging lineages - clonal interference. We find that in large populations, more intense clonal interference can foster diversification under sympatry, increasing the probability that phenotypically and genetically distinct clusters coexist. In smaller populations, the accumulation of deleterious and compensatory mutations can push further the diversification process and kick-start speciation. Our findings have implications beyond microbial populations, providing novel insights about the interplay between ecology and evolution in clonal populations.
引用
收藏
页码:2641 / 2657
页数:17
相关论文
empty
未找到相关数据