A note on chain lengths and the Tutte polynomial

被引:2
|
作者
Read, Ronald C. [1 ]
Whitehead, Earl Glen, Jr. [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
Tutte polynomial; homeomorphic graphs; Tutte-equivalent graphs; Tutte-unique graphs; s-Theta-graphs;
D O I
10.1016/j.disc.2006.09.049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the number of chains of given length in a graph G can be easily found from the Tutte polynomial of G. Hence two Tutte-equivalent graphs will have the same distribution of chain lengths. We give two applications of this latter statement. We also give the dual results for the numbers of multiple edges with given muliplicities. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1826 / 1829
页数:4
相关论文
共 50 条
  • [1] A NOTE ON THE TUTTE POLYNOMIAL AND THE AUTOMORPHISM GROUP OF A GRAPH
    Chbili, Nafaa
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (01)
  • [2] The Tutte polynomial
    Welsh, D
    RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 210 - 228
  • [3] On the polymatroid Tutte polynomial
    Guan, Xiaxia
    Yang, Weiling
    Jin, Xian'an
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 201
  • [4] Fourientations and the Tutte polynomial
    Backman, Spencer
    Hopkins, Sam
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2017, 4
  • [5] Inapproximability of the Tutte polynomial
    Goldberg, Leslie Ann
    Jerrum, Mark
    INFORMATION AND COMPUTATION, 2008, 206 (07) : 908 - 929
  • [6] On coefficients of the Tutte polynomial
    Leo, JW
    DISCRETE MATHEMATICS, 1998, 184 (1-3) : 121 - 135
  • [7] Inapproximability of the Tutte Polynomial
    Goldberg, Leslie Ann
    Jerrum, Mark
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 459 - 468
  • [8] A categorification for the Tutte polynomial
    Jasso-Hernandez, Edna F.
    Rong, Yongwu
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 2031 - 2049
  • [9] Ehrhart polynomial and arithmetic Tutte polynomial
    D'Adderio, Michele
    Moci, Luca
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (07) : 1479 - 1483
  • [10] A Tutte Polynomial for Maps
    Goodall, Andrew
    Krajewski, Thomas
    Regts, Guus
    Vena, Lluis
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (06): : 913 - 945