Symmetry-protected sign problem and magic in quantum phases of matter

被引:17
|
作者
Ellison, Tyler D. [1 ,2 ]
Kato, Kohtaro [3 ,4 ]
Liu, Zi-Wen [2 ]
Hsieh, Timothy H. [2 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] CALTECH, Inst Quantum Informat Arid Matter, Pasadena, CA 91125 USA
[4] Osaka Univ, Inst Open & Transdisciplinary Res Initiat, Ctr Quantum Informat & Quantum Biol, Osaka 5608531, Japan
来源
QUANTUM | 2021年 / 5卷
关键词
D O I
10.22331/q-2021-12-28-612
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the concepts of a symmetry-protected sign problem and symmetry-protected magic to study the complexity of symmetry-protected topological (SPT) phases of matter. In particular, we say a state has a symmetry-protected sign problem or symmetry-protected magic, if finite-depth quantum circuits composed of symmetric gates are unable to transform the state into a non-negative real wave function or stabilizer state, respectively. We prove that states belonging to certain SPT phases have these properties, as a result of their anomalous symmetry action at a boundary. For example, we find that one-dimensional Z(2) x Z(2) SPT states (e.g. cluster state) have a symmetry-protected sign problem, and two-dimensional Z(2) SPT states (e.g. Levin-Gu state) have symmetry-protected magic. Furthermore, we comment on the relation between a symmetry-protected sign problem and the computational wire property of one-dimensional SPT states. In an appendix, we also introduce explicit decorated domain wall models of SPT phases, which may be of independent interest.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Symmetry-Protected Topological Phases of Quantum Matter
    Senthil, T.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 : 299 - +
  • [2] Dynamics of symmetry-protected topological matter on a quantum computer
    Mercado, Miguel
    Chen, Kyle
    Darekar, Parth Hemant
    Nakano, Aiichiro
    Di Felice, Rosa
    Haas, Stephan
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [3] Symmetry-protected intermediate trivial phases in quantum spin chains
    Kshetrimayum, Augustine
    Tu, Hong-Hao
    Orus, Roman
    PHYSICAL REVIEW B, 2016, 93 (24)
  • [4] Digital quantum simulation of Floquet symmetry-protected topological phases
    Xu Zhang
    Wenjie Jiang
    Jinfeng Deng
    Ke Wang
    Jiachen Chen
    Pengfei Zhang
    Wenhui Ren
    Hang Dong
    Shibo Xu
    Yu Gao
    Feitong Jin
    Xuhao Zhu
    Qiujiang Guo
    Hekang Li
    Chao Song
    Alexey V. Gorshkov
    Thomas Iadecola
    Fangli Liu
    Zhe-Xuan Gong
    Zhen Wang
    Dong-Ling Deng
    H. Wang
    Nature, 2022, 607 : 468 - 473
  • [5] Symmetry-Protected Phases for Measurement-Based Quantum Computation
    Else, Dominic V.
    Schwarz, Ilai
    Bartlett, Stephen D.
    Doherty, Andrew C.
    PHYSICAL REVIEW LETTERS, 2012, 108 (24)
  • [6] Digital quantum simulation of Floquet symmetry-protected topological phases
    Zhang, Xu
    Jiang, Wenjie
    Deng, Jinfeng
    Wang, Ke
    Chen, Jiachen
    Zhang, Pengfei
    Ren, Wenhui
    Dong, Hang
    Xu, Shibo
    Gao, Yu
    Jin, Feitong
    Zhu, Xuhao
    Guo, Qiujiang
    Li, Hekang
    Song, Chao
    Gorshkov, Alexey, V
    Iadecola, Thomas
    Liu, Fangli
    Gong, Zhe-Xuan
    Wang, Zhen
    Deng, Dong-Ling
    Wang, H.
    NATURE, 2022, 607 (7919) : 468 - +
  • [7] Symmetry-Protected Quantum Spin Hall Phases in Two Dimensions
    Liu, Zheng-Xin
    Wen, Xiao-Gang
    PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [8] Stroboscopic symmetry-protected topological phases
    Iadecola, Thomas
    Santos, Luiz H.
    Chamon, Claudio
    PHYSICAL REVIEW B, 2015, 92 (12):
  • [9] Average Symmetry-Protected Topological Phases
    Ma, Ruochen
    Wang, Chong
    PHYSICAL REVIEW X, 2023, 13 (03)
  • [10] Symmetry-protected topological invariants of symmetry-protected topological phases of interacting bosons and fermions
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2014, 89 (03)