Higher order nonlocal boundary value problems at resonance on the half-line

被引:1
|
作者
Iyase, S. A. [1 ]
Opanuga, A. A. [1 ]
机构
[1] Covenant Univ, Coll Sci & Technol, Dept Math, Ota, Ogun State, Nigeria
来源
关键词
Higher order; Resonance; Coincidence degree; Nonlocal boundary value problem; Half-Line; POSITIVE SOLUTIONS; SOLVABILITY;
D O I
10.29020/nybg.ejpam.v13i1.3539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the solvability of a class of higher order nonlocal boundary value problems of the form u((n))(t) = g(t, u(t), u'(t) ... u((n-1))(t)), a.e. t is an element of (0,infinity) subject to the boundary conditions u((n-1))(0) =( )(n-1)!/xi(n-1)u(xi), u((i))(0) = 0,i = 1, 2, ..., n-2, u((n-1))(infinity) = integral(epsilon )(0)u((n-1))(s)dA(s) where xi > 0, g : [0, infinity) x R-n -> R Th is a Caratheodory's function, A : [0,xi] -> [0,1) is a non-decreasing function with A(0) = 0, A(xi) = 1. The differential operator is a Fredholm map of index zero and non-invertible. We shall employ coicidence degree arguments and construct suitable operators to establish existence of solutions for the above higher order nonlocal boundary value problems at resonance.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条