共 50 条
SCHRODINGER-KIRCHHOFF-HARDY p-RACTIONAL EQUATIONS WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION
被引:7
|作者:
Fiscella, Alessio
[1
]
机构:
[1] Univ Estadual Campinas, Dept Matemat, IMECC, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
来源:
基金:
巴西圣保罗研究基金会;
关键词:
Schrodinger-Kirchhoff equations;
existence of entire solutions;
fractional p-Laplacian operator;
Hardy coefficients;
variational methods;
NONTRIVIAL SOLUTIONS;
EXISTENCE THEOREMS;
MULTIPLICITY;
LAPLACIAN;
SYSTEMS;
D O I:
10.3934/dcdss.2020154
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper is devoted to the study of the following Schrodinger-Kirchhoff-Hardy equation in R-n M(integral integral(R2n) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(n) vertical bar ps dxdy) (-Delta)(p)(s)u + V(x)vertical bar u vertical bar(p-2) u-u vertical bar u vertical bar(p-2)u/vertical bar x vertical bar p(s) = f(x, u), where (-Delta)(p)(s) is the fractional p-Laplacian, with s is an element of (0, 1) and p > 1, dimension n > ps, M models a Kirchhoff coefficient, V is a positive potential, f is a continuous nonlinearity and mu is a real parameter. The main feature of the paper is the combination of a Kirchhoff coefficient and a Hardy term with a suitable function f which does not necessarily satisfy the Ambrosetti-Rabinowitz condition. Under different assumptions for f and restrictions for mu, we provide existence and multiplicity results by variational methods.
引用
收藏
页码:1993 / 2007
页数:15
相关论文