Quantum Computing with Rotation-Symmetric Bosonic Codes

被引:123
|
作者
Grimsmo, Arne L. [1 ]
Combes, Joshua [2 ]
Baragiola, Ben Q. [3 ]
机构
[1] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW, Australia
[2] Univ Queensland, Sch Math & Phys, Ctr Engn Quantum Syst, St Lucia, Qld 4072, Australia
[3] RMIT Univ, Sch Sci, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3001, Australia
来源
PHYSICAL REVIEW X | 2020年 / 10卷 / 01期
基金
澳大利亚研究理事会;
关键词
ERROR-CORRECTION; PHASE MEASUREMENTS; STATES; ENTANGLEMENT; CIRCUITS; OPERATOR; MODES; QUBIT;
D O I
10.1103/PhysRevX.10.011058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bosonic rotation codes, introduced here, are a broad class of bosonic error-correcting codes based on phase-space rotation symmetry. We present a universal quantum computing scheme applicable to a subset of this class-number-phase codes-which includes the well-known cat and binomial codes, among many others. The entangling gate in our scheme is code agnostic and can be used to interface different rotation-symmetric encodings. In addition to a universal set of operations, we propose a teleportation-based error-correction scheme that allows recoveries to be tracked entirely in software. Focusing on cat and binomial codes as examples, we compute average gate fidelities for error correction under simultaneous loss and dephasing noise and show numerically that the error-correction scheme is close to optimal for error-free ancillae and ideal measurements. Finally, we present a scheme for fault-tolerant, universal quantum computing based on the concatenation of number-phase codes and Bacon-Shor subsystem codes.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Performance of Rotation-Symmetric Bosonic Codes in a Quantum Repeater Network
    Li, Pei-Zhe
    Dias, Josephine
    Munro, William J.
    van Loock, Peter
    Nemoto, Kae
    Lo Piparo, Nicolo
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (06)
  • [2] Multimode rotation-symmetric bosonic codes from homological rotor codes
    Xu, Yijia
    Wang, Yixu
    Albert, Victor V.
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [3] Parallel Manipulators With a Rotation-Symmetric Arm System
    Isaksson, Mats
    Brogardh, Torgny
    Nahavandi, Saeid
    JOURNAL OF MECHANICAL DESIGN, 2012, 134 (11)
  • [4] Results on rotation-symmetric S-boxes
    Kavut, Selcuk
    INFORMATION SCIENCES, 2012, 201 : 93 - 113
  • [5] GRAVITY FIELD OF A ROTATION-SYMMETRIC HOMOGENEOUS ELLIPSOID SEGMENT
    KOLBENHEYER, T
    STUDIA GEOPHYSICA ET GEODAETICA, 1967, 11 (04) : 413 - +
  • [6] Fast evaluation, weights and nonlinearity of rotation-symmetric functions
    Cusick, TW
    Stanica, P
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 289 - 301
  • [7] Isoperimetric type inequalities on submanifolds in rotation-symmetric spaces
    Gu, Jiao
    ANNALES POLONICI MATHEMATICI, 2022, : 43 - 53
  • [8] A 5-DOF Rotation-Symmetric Parallel Manipulator with One Unconstrained Tool Rotation
    Isaksson, Mats
    Brogardh, Torgny
    Nahavandi, Saeid
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1095 - 1100
  • [9] Imaging of Rotation-Symmetric Space Targets Based on Electromagnetic Modeling
    Bai, Xueru
    Bao, Zheng
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2014, 50 (03) : 1680 - 1689
  • [10] Extrinsic parameters and focal length calibration using rotation-symmetric patterns
    Liu, Ruizhi
    Zhang, Hongran
    Lu, Jian
    Sun, Yi
    IET IMAGE PROCESSING, 2016, 10 (03) : 189 - 197