Maximizing maximal angles for plane straight-line graphs

被引:0
|
作者
Aichholzer, Oswin [1 ]
Hackl, Thomas [1 ]
Hoffmann, Michael [2 ]
Huemer, Clemens [3 ]
Por, Attila [4 ]
Santos, Francisco [5 ]
Speckmann, Bettina [6 ]
Vogtenhuber, Birgit [1 ]
机构
[1] Graz Univ Technol, Inst Software Technol, A-8010 Graz, Austria
[2] ETH, Zurich, Switzerland
[3] Univ Politecn Cataluna, Dept Matemat Aplicada II, E-08028 Barcelona, Spain
[4] Charles Univ Prague, Dept Appl Math, Inst Theoret Comp Sci, CR-11636 Prague, Czech Republic
[5] Univ Cantabria, Dept Matemat Estadyst & Computac, Santander, Spain
[6] TU, Dept Math & Comp Sci, Eindhoven, Netherlands
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let G = (S, E) be a plane straight-line graph on a finite point set S subset of R-2 in general position. The incident angles of a point p is an element of S in G are the angles between any two edges of G that appear consecutively in the circular order of the edges incident to p. A plane straight-line graph is called phi-open if each vertex has an incident angle of size at least phi. In this paper we study the following type of question: What is the maximum angle phi such that for any finite set S subset of R-2 of points in general position we can find a graph from a certain class of graphs on S that is phi-open? In particular, we consider the classes of triangulations, spanning trees, and paths on S and give tight bounds in most cases.
引用
收藏
页码:458 / +
页数:3
相关论文
共 50 条
  • [1] Maximizing maximal angles for plane straight-line graphs
    Aichholzer, Oswin
    Hackl, Thomas
    Hoffmann, Michael
    Huemer, Clemens
    Por, Attila
    Santos, Francisco
    Speckmann, Bettina
    Vogtenhuber, Birgit
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (01): : 17 - 28
  • [2] Gray code enumeration of plane straight-line graphs
    Aichholzer, O.
    Aurenhammer, F.
    Huemer, C.
    Vogtenhuber, B.
    GRAPHS AND COMBINATORICS, 2007, 23 (05) : 467 - 479
  • [3] Gray Code Enumeration of Plane Straight-Line Graphs
    O. Aichholzer
    F. Aurenhammer
    C. Huemer
    B. Vogtenhuber
    Graphs and Combinatorics, 2007, 23 : 467 - 479
  • [4] GA for straight-line grid drawings of maximal planar graphs
    El-Sayed, Mohamed A.
    EGYPTIAN INFORMATICS JOURNAL, 2012, 13 (01) : 9 - 17
  • [5] ON STRAIGHT-LINE EMBEDDING OF GRAPHS
    Faramarzi, Hamed
    Rahbarnia, Freydoon
    Tavakoli, Mostafa
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (01): : 123 - 126
  • [6] Compact visibility representation and straight-line grid embedding of plane graphs
    Zhang, HM
    He, X
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2003, 2748 : 493 - 504
  • [7] On a straight-line embedding problem of graphs
    Tokunaga, S
    DISCRETE MATHEMATICS, 1996, 150 (1-3) : 371 - 378
  • [8] On a straight-line embedding problem of graphs
    Department of Applied Mathematics, Science University of Tokyo, Shinjuku-ku, Tokyo, 162, Japan
    Discrete Math, 1-3 (371-378):
  • [9] PLANAR STRAIGHT-LINE AND THE PRIMARY PLANE
    SAXON, E
    ARTFORUM, 1979, 17 (08): : 36 - 41
  • [10] An algorithm for straight-line drawing of planar graphs
    Harel, D
    Sardas, M
    ALGORITHMICA, 1998, 20 (02) : 119 - 135