Individual genome sequencing of livestock animals - en route to genomic selection 2.0

被引:0
|
作者
Fries, R. [1 ]
Rausch, H. [1 ]
机构
[1] Tech Univ Munich, Lehrstuhl Tierzucht, D-85354 Freising Weihenstephan, Germany
来源
ZUCHTUNGSKUNDE | 2011年 / 83卷 / 4-5期
关键词
Genomic selection; genome sequencing; next-generation sequencing technology; quantitative trait locus; quantitative trait nucleotide; POLYMORPHISM;
D O I
暂无
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Since reference genome sequences of livestock species have become available few years ago, animal selection methodology is changing at an unexpected rate. Predicting breeding values on the basis of anonymous quantitative trait loci (QTL) tagged by densely spaced markers instead of (or supplementary to) progeny testing is widely applied in dairy cattle. We dub this approach to genomic animal improvement as "genomic selection 1.0". The rapid developments of sequencing technologies now enable sequencing of numerous individuals and open new avenues to the systematic identification of DNA variants that affect quantitative traits, so called quantitative trait nucleotides (QTN). QTN will be explored mainly within QTL with large effects (very important QTL, viQTL). The explicit consideration of QTL within viQTL is the main feature of "genomic selection 2.0", which will be particularly important to improving health traits by means of selection.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 32 条
  • [1] Sequencing millions of animals for genomic selection 2.0
    Hickey, J. M.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2013, 130 (05) : 331 - 332
  • [2] Potential of genotyping-by-sequencing for genomic selection in livestock populations
    Gorjanc, Gregor
    Cleveland, Matthew A.
    Houston, Ross D.
    Hickey, John M.
    GENETICS SELECTION EVOLUTION, 2015, 47
  • [3] Potential of genotyping-by-sequencing for genomic selection in livestock populations
    Gregor Gorjanc
    Matthew A Cleveland
    Ross D Houston
    John M Hickey
    Genetics Selection Evolution, 47
  • [4] Livestock 2.0 – genome editing for fitter, healthier, and more productive farmed animals
    Christine Tait-Burkard
    Andrea Doeschl-Wilson
    Mike J. McGrew
    Alan L. Archibald
    Helen M. Sang
    Ross D. Houston
    C. Bruce Whitelaw
    Mick Watson
    Genome Biology, 19
  • [5] Livestock 2.0-genome editing for fitter, healthier, and more productive farmed animals
    Tait-Burkard, Christine
    Doeschl-Wilson, Andrea
    McGrew, Mike J.
    Archibald, Alan L.
    Sang, Helen M.
    Houston, Ross D.
    Whitelaw, C. Bruce
    Watson, Mick
    GENOME BIOLOGY, 2018, 19
  • [6] Low-coverage whole-genome sequencing in livestock species for individual traceability and parentage testing
    Casellas, Joaquim
    de Hijas-Villalba, Melani Martin
    Vazquez-Gomez, Marta
    Id-Lahoucine, Samir
    LIVESTOCK SCIENCE, 2021, 251
  • [7] Genomic Selection in Chinese Holsteins Using Regularized Regression Models for Feature Selection of Whole Genome Sequencing Data
    Li, Shanshan
    Yu, Jian
    Kang, Huimin
    Liu, Jianfeng
    ANIMALS, 2022, 12 (18):
  • [8] Short-read genome sequencing allows 'en route' diagnosis of patients with atypical Friedreich ataxia
    Fleszar, Zofia
    Dufke, Claudia
    Sturm, Marc
    Schuele, Rebecca
    Schoels, Ludger
    Haack, Tobias B.
    Synofzik, Matthis
    JOURNAL OF NEUROLOGY, 2023, 270 (08) : 4112 - 4117
  • [9] Short-read genome sequencing allows ‘en route’ diagnosis of patients with atypical Friedreich ataxia
    Zofia Fleszar
    Claudia Dufke
    Marc Sturm
    Rebecca Schüle
    Ludger Schöls
    Tobias B. Haack
    Matthis Synofzik
    Journal of Neurology, 2023, 270 : 4112 - 4117
  • [10] Whole-Genome Sequencing Reveals the Genomic Characteristics and Selection Signatures of Hainan Black Goat
    Chen, Qiaoling
    Chai, Yuan
    Zhang, Wencan
    Cheng, Yiwen
    Zhang, Zhenxing
    An, Qi
    Chen, Si
    Man, Churiga
    Du, Li
    Zhang, Wenguang
    Wang, Fengyang
    GENES, 2022, 13 (09)